Effects of Banggihwanggi-Tang on Obesity-related Enteroendocrine Cells and Neuropeptides in Mice

방기황기탕(防己黃芪湯)이 생쥐의 비만관련 장내분비세포와 신경펩타이드에 미치는 영향

  • Kim, Tae-Heon (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Kim, Ho-Il (Department of Anatomy, College of Oriental Medicine, Woosuk University) ;
  • Lee, Kwang-Gyu (Department of Oriental Pathology, College of Oriental Medicine, Woosuk University) ;
  • Lee, Sang-Ryong (Department of Meridian & Acupoint, College of Oriental Medicine, Woosuk University) ;
  • Lee, Chang-Hyun (Department of Anatomy, College of Oriental Medicine, Woosuk University)
  • 김태헌 (우석대학교 한의과대학 해부학교실) ;
  • 김호일 (우석대학교 한의과대학 해부학교실) ;
  • 이광규 (우석대학교 한의과대학 한방병리학교실) ;
  • 이상룡 (우석대학교 한의과대학 경혈학교실) ;
  • 이창현 (우석대학교 한의과대학 해부학교실)
  • Received : 2012.06.28
  • Accepted : 2012.08.09
  • Published : 2012.08.25

Abstract

To determine the effects of Banggihwanggi-tang(BGHGT) on obesity, the obesity-related factors[gastrin, calcitonin gene related peptide(CGRP), serotonin, ghrelin, obestatin, glucagon-like peptide-1(GLP-1), insulin, orexin, leptin] were investigated in the stomach, pancreas, brain of mice by immunohistochemical(IHC) methods for 4 weeks. The change of body weight was more reduced in BGHGT administered group than that of control group. The IHC density of the gastrin and CGRP positive cells on pylorus was higher in BGHGT administered group than that of control group. The number of ghrelin immunoreactive cells on stomach was lower in BGHGT administered group than that of control group. The IHC of GLP-1 positive cells did not observe in the stomach of BGHGT administered groups. The IHC density of GLP-1 in the pancreas was lower in BGHGT administered group than that of control group. The IHC density of insulin positive cells in the pancreas was lower in BGHGT administered group than that of control group. The IHC density of orexin positive neurons in the diencephalon was slightly higher in BGHGT administered group than that of control group. The IHC density of NPY and leptin positive neurons was slightly higher in BGHGT administered group than that of control group. The IHC density of serotonin positive neurons was higher in BGHGT administered group than that of control group. Therefore, we conclude that BGHGT activates appetite inhibitor through appetite related enteroendocrine cells and neuropeptides in stomach, pancreas and brain, and this activation may also be responsible for the inhibition of feeding behavior.

Acknowledgement

Supported by : 우석대학교

References

  1. Field, A.E., Coakley, E.H., Must, A., Spadano, J.L., Laird, N., Dietz, W.H., Rimm, E., Colditz, G.A. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med 161: 1581-1586, 2001. https://doi.org/10.1001/archinte.161.13.1581
  2. Must, A., Spadano, J., Coakley, E.H., Field, A.E., Colditz, G., Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 282: 1523-1529, 1999. https://doi.org/10.1001/jama.282.16.1523
  3. Polesel, J., Zucchetto, A., Montella, M., Dal Maso, L., Crispo, A., La Vecchia, C., Serraino, D., Franceschi, S., Talamini, R. The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol 20: 353-357, 2009.
  4. Hu, G., Jousilahti, P., Nissinen, A., Antikainen, R., Kivipelto, M., Tuomilehto, J. Body mass index and the risk of Parkinson disease. Neurology 67: 1955-1959, 2006. https://doi.org/10.1212/01.wnl.0000247052.18422.e5
  5. Whitmer, R.A., Gunderson, E..P, Quesenberry, C.P. Jr., Zhou, J., Yaffe, K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res 4: 103-109, 2007. https://doi.org/10.2174/156720507780362047
  6. Druce, M., Bloom, S.R. The regulation of appetite. Arch Dis Child 91: 183-187, 2006.
  7. Yanovski, S.Z., Yanovski, J.A. Obesity. N Engl J Med 346: 591-602, 2002. https://doi.org/10.1056/NEJMra012586
  8. 김철희. 비만의 약물치료. 임상당뇨병 9: 173-177, 2008.
  9. 이재성, 이성현. 한방치료의 체지방 및 복부비만 감소효과. 대한한방비만학회지 1: 33-42, 2001.
  10. 홍원식. 교합편찬. 정교황제내경. 서울, 동양의학연구원 출판부, p 61, 1974.
  11. 趙金譯주편. 중의증상감별진단학. 북경, 인민위생출판사, p 43, 1987.
  12. 虞天民. 醫學正傳, 서울, 성보사, p 75, 1986.
  13. 李梃. 편주 醫學入門, 서울, 대성문화사, 외집 1권, p 323, 권2, p 108, 1974.
  14. 張仲景. 金匱要略方論, 서울, 성보사 p 21, 35, 70, 1985.
  15. 中醫硏究員주편. 中醫症狀鑑別診斷學, 북경, 인민위생출판 사, p 43, 1987.
  16. 유은주, 서병관, 남상수, 강성길. 고지방식이로 유도된 비만 생쥐에서 蒼朮약침의 항비만효과. 대한침구학회지 27: 31-42, 2010.
  17. 김진혁, 신민섭, 최석우, 송범용, 육태한. 麻黃川烏藥鍼이 비만에 미치는 영향. 대한침구학회지 26: 77-83, 2009.
  18. 정지윤, 김종인, 이상훈, 강성길. 전침이 복부비만 성인의 비만관련 지표에 미치는 영향 - 무작위배정 단일 맹검 예비연구. 대한침구학회지 27: 43-57, 2010.
  19. 윤태숙, 성윤영, 장자영, 양원경, 지윤의, 김호경. 목향 추출물의 항비만 활성 효과. 한국약용작물학회지 18: 151-156, 2010.
  20. 기성식, 이영종. 防己黃芪湯및 防己茯苓湯이 고지혈증 흰쥐에 미치는 영향. 대한본초학회지 20: 149-157, 2005.
  21. 양동혁, 김재현, 정종길, 정현우, 최찬헌. 태음조위탕과 태음조위배마황탕이 비만 흰쥐에 미치는 영향. 대한본초학회지 25: 103-109, 2010.
  22. 謝鳴. 中醫方劑現代硏究, 北京, 學苑出版社, pp 44, 1440-1442, 1997.
  23. 김수익, 송용선. 防己黃芪湯전탕액이 백서의 실험적 비만증과 전지방세포인 3T3-L1의 지방세포 분화에 미치는 영향. 한방재활의학과학회지 7: 120-135, 1997.
  24. 이응세, 김성수, 정석희, 이종수, 신현대. 防己黃芪湯이 비만유도 흰쥐의 간 및 부고환 지방조직과 혈청지질의 변화에 미치는 영향. 한방재활의학과학회지 5: 1-37, 1995.
  25. 송용선, 이명종, 정석희, 이종수, 김성수, 신현대. 防己黃芪湯 및 구기자가 비만백서의 체중에 미치는 영향. 한방재활의학과학회지 1: 25-43, 1991.
  26. 노의준, 강한은. 古方類聚, 서울, 도서출판 고방, p 306, 833, 2009.
  27. 吉益東洞. 藥徵, 청홍, 서울, pp 129-135, 2006.
  28. Hsu, S.M., Raine, L., Fanger, H. Use of avidin-biotin-peroxidase complex(ABC) in immunoperoxidase techniques: A comparison between ABC and unlabeled antibody(PAP) procedures. J Histochem Cytochem 29: 577-580, 1981. https://doi.org/10.1177/29.4.6166661
  29. 대한비만학회. 임상비만학, 서울, 고려의학, pp 184-189, 1995.
  30. Hubert, H.B., Feinleib, M., McNamara, P.M., Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: A-26 year follow up of participants in the Framingham heart study. Circulation 67: 968-977, 1982.
  31. Isselbacher, K.J.. Harrison,s principles of internal medicine. New York: McGraw-Hill. pp 446-452, 1994.
  32. Li, G., Chen, X., Jang, Y., Wang, J., Xing, X., Yang, W., Hu, Y. Obesity, coronary heart disease risk factors and diabetes in chinese: an approach to the criteria of obesity in the chinese population. Obes Rev 3: 167-172, 2002. https://doi.org/10.1046/j.1467-789X.2002.00067.x
  33. 전국한의과대학본초학교수공편. 본초학, 서울, 영림사, pp 263-264, 1991.
  34. 조호근, 김동일. 防己의 투여가 비만 유발 쥐의 생리기능과 DNA Chip을 통한 유전자 발현에 미치는 영향에 대한 연구. 대한한방부인과학회지 20: 41-55, 2007.
  35. 송용선. 防己黃芪湯및 구기자가 비만백서의 체중에 미치는 영향. 원광한의학 2: 102-120, 1992.
  36. 전국한의과대학본초학교수공편. 본초학, 서울, 영림사, pp 534-536, 1991.
  37. 김학준, 김정범. 黃芪가 흰쥐의 식이성 고지혈증에 미치는 영향. 동의생리병리학회지 22: 575-579, 2008.
  38. 전국한의과대학본초학교수공편. 본초학, 서울, 영림사, pp 289-290, 1991.
  39. Satoh, K., Yasuda, I., Nagai, F., Ushiyama, K., Akiyama, K., Kano, I. The effects of crude drugs using diuretic on horse kidney(Na++K+)-adenosine triposphatase. Yakugaku Zasshi 111: 138-145, 1991.
  40. 고석태, 김성호. 蒼朮이 개의 신기능에 미치는 영향. 대한약제학회지 3: 23-33, 1973.
  41. Naslund, E., Hellstrom, Per M. Appetite signaling: From gut peptides and enteric nerves to brain. Physiology & Behavior 92: 256-262, 2007. https://doi.org/10.1016/j.physbeh.2007.05.017
  42. Lavine, J.A., Attie, A.D. Gastrointestinal hormones and the regulation of $\beta$-cell mass. Ann NY Acad Sci 1212: 41-58, 2010. https://doi.org/10.1111/j.1749-6632.2010.05802.x
  43. Dockray, G., Dimaline, R., Varro, A. Gastrin: old hormone, new functions. Pflugers Arch 449: 344-355, 2005. https://doi.org/10.1007/s00424-004-1347-5
  44. Rehfeld, J.F. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides. Acta Physiol (Oxf). 201: 405-411, 2011. https://doi.org/10.1111/j.1748-1716.2010.02235.x
  45. Evangelista, S. Role of calcitonin gene-related Peptide in gastric mucosal defence and healing. Curr Pharm Des 15: 3571-3576, 2009. https://doi.org/10.2174/138161209789207024
  46. Zelissen, P.M., Koppeschaar, H.P., Lips, C.J., Hackeng, W.H. Calcitonin gene-related peptide in human obesity. Peptides 12: 861-863, 1991. https://doi.org/10.1016/0196-9781(91)90147-H
  47. Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H., Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656-660, 1999. https://doi.org/10.1038/45230
  48. Guan, X.M., Yu, H., Palyha, O.C., McKee, K.K., Feighner, S.D., Sirinathsinghji, D.J., Smith, R.G., Van der Ploeg, L.H., Howard, A.D. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res 48: 23-29, 1997. https://doi.org/10.1016/S0169-328X(97)00071-5
  49. Katayama, M., Nogami, H., Nishiyama, J., Kawase, T., Kawamura, K. Developmentally and regionally regulated expression of growth hormone secretagogue receptor mRNA in rat brain and pituitary gland. Neuroendocrinology 72: 333-340, 2000. https://doi.org/10.1159/000054602
  50. Wren, A.M., Small, C.J., Abbott, C.R., Dhillo, W.S., Seal, L.J., Cohen, M.A., Batterham, R.L., Taheri, S., Stanley, S.A., Ghatei, M.A., Bloom, S.R. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 86: 5992, 2001. https://doi.org/10.1210/jc.86.12.5992
  51. Nakazato, M., Murakami, N., Date, Y., Kojima, M., Matsuo, H., Kangawa, K., Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature 409: 194-198, 2001. https://doi.org/10.1038/35051587
  52. Hewson, A.K., Tung, L.Y., Connell, D.W., Tookman, L., Dickson, S.L. The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic. Diabetes 51: 3412-3419, 2002. https://doi.org/10.2337/diabetes.51.12.3412
  53. Holst, J.J. Enteroglucagon. Annu Rev Physiol 59: 257-271, 1997. https://doi.org/10.1146/annurev.physiol.59.1.257
  54. Kreymann, B., Williams, G., Ghatei, M.A., Bloom, S.R. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2: 1300-1304, 1987.
  55. Schwartz, M.W., Woods, S.C., Porte, D. Jr., Seeley, R.J., Baskin, D.G. Central nervous system control of food intake. Nature 404: 661-671, 2000.
  56. Kalra, S.P., Dube, M.G., Pu, S., Xu, B., Horvath, T.L., Kalra, P.S. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20: 68-100, 1999. https://doi.org/10.1210/er.20.1.68
  57. Cone, R.D. Cowley, M.A., Butler, A.A., Fan, W., Marks, D.L., Low, M.J. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int J Obes Relat Metab Disord 25(Suppl. 5): S63-S67, 2001.
  58. Simpson, K.A., Niamh, M., Martin, N.M., Bloom, S.R. Hypothalamic regulation of food intake and clinical therapeutic applications. Arq Bras Endocrinol Metab 53: 120-128, 2009.
  59. Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M., Goto, K. Distribution of orexin neurons in the adult rat brain. Brain Res 827: 243-260, 1999. https://doi.org/10.1016/S0006-8993(99)01336-0
  60. Saper, C.B. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 153: 243-252, 2006.
  61. Cowley, M.A. Smart, J.L., Rubinstein, M., Cerdan, M.G., Diano, S., Horvath, T.L., Cone, R.D., Low, M.J. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411: 480-484, 2001. https://doi.org/10.1038/35078085
  62. Wang, L., Martínez, V., Barrachina, M.D., Tache, Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res 791: 157-166, 1998. https://doi.org/10.1016/S0006-8993(98)00091-2
  63. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue Nature 372: 425-432, 1994. https://doi.org/10.1038/372425a0
  64. Campfield, L.A., Smith, F.J., Burn, P. The OB protein (leptin) pathway-link between adipose tissue mass and central neural networks. Horm Metab Res 28: 619-632, 1996. https://doi.org/10.1055/s-2007-979867
  65. Hamao, M., Matsuda, H., Nakamura, S., Nakashima, S., Semura, S., Maekubo, S., Wakasugi, S., Yoshikawa, M. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Camellia sinensis in mice. Bioorg Med Chem 19: 6033-6041, 2011. https://doi.org/10.1016/j.bmc.2011.08.042
  66. Dube, M.G., Xu, B., Crowley, W.R., Kalra, P.S., Kalra, S.P. Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 646: 341-344, 1994. https://doi.org/10.1016/0006-8993(94)90103-1
  67. Bai, F.L., Yamano, M., Shiotan,i Y., Emson, P.C., Smith, A.D., Powell, J.F., Tohyama, M. An arcuato-paraventricular and -dorsomedial hypothalamic neuropeptide Y-containing system which lacks noradrenaline in the rat. Brain Res 331: 172-175, 1985. https://doi.org/10.1016/0006-8993(85)90730-9
  68. Stanley, B.G., Leibowitz, S.F. Neuropeptide Y injected in the paraventricular hypothalamus: a powerful stimulant of feeding behavior. Proc Natl Acad Sci USA 82: 3940-3943, 1985. https://doi.org/10.1073/pnas.82.11.3940
  69. Chronwall, B.M. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 6 [Suppl 2]: 1-11, 1985.
  70. Smith, AI., Funder, J.W. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 9: 159-179, 1988. https://doi.org/10.1210/edrv-9-1-159