DOI QR코드

DOI QR Code

Galectin-3-independent Down-regulation of GABABR1 due to Treatment with Korean Herbal Extract HAD-B Reduces Proliferation of Human Colon Cancer Cells

  • Kim, Kyung-Hee (Research Institute, National Cancer Center) ;
  • Kwon, Yong-Kyun (East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University) ;
  • Cho, Chong-Kwan (East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University) ;
  • Lee, Yeon-Weol (East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University) ;
  • Lee, So-Hyun (Research Institute, National Cancer Center) ;
  • Jang, Sang-Geun (Research Institute, National Cancer Center) ;
  • Yoo, Byong-Chul (Research Institute, National Cancer Center) ;
  • Yoo, Hwa-Seong (East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University)
  • Received : 2012.07.04
  • Accepted : 2012.09.10
  • Published : 2012.09.30

Abstract

Objectives: Many efforts have shown multi-oncologic roles of galectin-3 for cell proliferation, angiogenesis, and apoptosis. However, the mechanisms by which galectin-3 is involved in cell proliferation are not yet fully understood, especially in human colon cancer cells. Methods: To cluster genes showing positively or negatively correlated expression with galectin-3, we employed human colon cancer cell lines, SNU-61, SNU-81, SNU-769B, SNU-C4 and SNU-C5 in high-throughput gene expression profiling. Gene and protein expression levels were determined by using real-time quantitative polymerase chain reaction (PCR) and western blot analysis, respectively. The proliferation rate of human colon cancer cells was measured by using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results: Expression of ${\gamma}$-aminobutyric acid B receptor 1 (GABABR1) showed a positive correlation with galectin-3 at both the transcriptional and the translational levels. Down-regulation of galectin-3 decreased not only GABABR1 expression but also the proliferation rate of human colon cancer cells. However, Korean herbal extract, HangAmDan-B (HAD-B), decreased expression of GABABR1 without any expressional change of galectin-3, and offset ${\gamma}$-aminobutyric acid (GABA)-enhanced human colon cancer cell proliferation. Conclusions: Our present study confirmed that GABABR1 expression was regulated by galectin-3. HAD-B induced galectin-3-independent down-regulation of GABABR1, which resulted in a decreased proliferation of human colon cancer cells. The therapeutic effect of HAD-B for the treatment of human colon cancer needs to be further validated.

Acknowledgement

Supported by : National Cancer Center

References

  1. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269(33):20807-10.
  2. Gong HC, Honjo Y, Nangia-Makker P, Hogan V, Mazurak N, Bresalier RS, et al. The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. Cancer Res. 1999;59(24):6239-45.
  3. Herrmann J, Turck CW, Atchison RE, Huflejt ME, Poulter L, Gitt MA, et al. Primary structure of the soluble lactose binding lectin L-29 from rat and dog and interaction of its non-collagenous proline-, glycine-, tyrosine-rich sequence with bacterial and tissue collagenase. J Biol Chem. 1993;268(35):26704-11.
  4. Yang RY, Liu FT. Galectins in cell growth and apoptosis. Cell Mol Life Sci. 2003;60(2):267-76. https://doi.org/10.1007/s000180300022
  5. Inohara H, Raz A. Functional evidence that cell surface galectin-3 mediates homotypic cell adhesion. Cancer Res. 1995;55(15):3267-71.
  6. Inohara H, Akahani S, Raz A. Galectin-3 stimulates cell proliferation. Exp Cell Res. 1998;245(2):294-302. https://doi.org/10.1006/excr.1998.4253
  7. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, et al. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol. 2000;156(3):899-909. https://doi.org/10.1016/S0002-9440(10)64959-0
  8. Fukumori T, Oka N, Takenaka Y, Nangia-Makker P, Elsamman E, Kasai T, et al. Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer. Cancer Res. 2006;66(6):3114-9. https://doi.org/10.1158/0008-5472.CAN-05-3750
  9. Joo HG, Goedegebuure PS, Sadanaga N, Nagoshi M, Von Bernstorff W, Eberlein TJ. Expression and function of galectin-3, a beta-galactoside-binding protein in activated T lymphocytes. J Leukoc Biol. 2001;69(4):555-64.
  10. Yoshii T, Inohara H, Takenaka Y, Honjo Y, Akahani S, Nomura T, et al. Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. Int J Oncol. 2001;18(4):787-92.
  11. Yoo BC, Hong SH, Ku JL, Kim YH, Shin YK, Jang SG, et al. Galectin-3 stabilizes heterogeneous nuclear ribonucleoprotein Q to maintain proliferation of human colon cancer cells. Cell Mol Life Sci. 2009;66(2):350-64. https://doi.org/10.1007/s00018-009-8562-3
  12. Miyazaki J, Hokari R, Kato S, Tsuzuki Y, Kawaguchi A, Nagao S, et al. Increased expression of galectin-3 in primary gastric cancer and the metastatic lymph nodes. Oncol Rep. 2002;9(6):1307-12.
  13. Castronovo V, Van Den Brule FA, Jackers P, Clausse N, Liu FT, Gillet C, et al. Decreased expression of galectin-3 is associated with progression of human breast cancer. J Pathol. 1996;179(1):43-8. https://doi.org/10.1002/(SICI)1096-9896(199605)179:1<43::AID-PATH541>3.0.CO;2-N
  14. Van den Bru^le FA, Berchuck A, Bast RC, Liu FT, Gillet C, Sobel ME, et al. Differential expression of the 67-kD laminin receptor and 31-kD human laminin-binding protein in human ovarian carcinomas. Eur J Cancer. 1994;30(8):1096-9. https://doi.org/10.1016/0959-8049(94)90464-2
  15. Pacis RA, Pilat MJP, Pienta KJ, Wojno KJ, Raz A, Hogan V, et al. Decreased galectin-3 expression in prostate cancer. Prostate. 2000;44(2):118-23. https://doi.org/10.1002/1097-0045(20000701)44:2<118::AID-PROS4>3.0.CO;2-U
  16. Mollenhauer J, Deichmann M, Helmke B, Mu..ller H, Kollender G, Holmskov U, et al. Frequent down-regulation of DMBT1 and galectin-3 in epithelial skin cancer. Int J Cancer. 2003;105(2):149-57. https://doi.org/10.1002/ijc.11072
  17. Choufani G, Nagy N, Saussez S, Marchant H, Bisschop P, Burchert M, et al. The levels of expression of galectin-1, galectin-3, and the Thomsen-Friedenreich antigen and their binding sites decrease as clinical aggressiveness increases in head and neck cancers. Cancer. 1999;86(11):2353-63. https://doi.org/10.1002/(SICI)1097-0142(19991201)86:11<2353::AID-CNCR25>3.0.CO;2-A
  18. Choi YJ, Shin DY, Lee YW, Cho CK, Kim GY, Kim WJ, et al. Inhibition of cell motility and invasion by HangAmDan-B in NCI-H460 human non-small cell lung cancer cells. Oncol Rep. 2011;26(6):1601-8.
  19. Bang JY, Kim KS, Kim EY, Yoo HS, Lee YW, Cho CK, et al. Anti-angiogenic effects of the water extract of HangAmDan (WEHAD), a Korean traditional medicine. Sci China Life Sci. 2011;54(3):248-54. https://doi.org/10.1007/s11427-011-4144-3
  20. Park HM, Kim SY, Jung IC, Lee YW, Cho CK, Yoo HS. Integrative tumor board: a case report and discussion from East- West Cancer Center. Integr Cancer Ther. 2010;9(2):236-45. https://doi.org/10.1177/1534735410371479
  21. Bang JY, Kim EY, Shim TK, Yoo HS, Lee YW, Kim YS, et al. Analysis of anti-angiogenic mechanism of HangAmDan-B (HAD-B), a Korean traditional medicine, using antibody microarray chip. BioChip J. 2010;4(4):350-5. https://doi.org/10.1007/s13206-010-4412-5
  22. Yoo HS, Lee HJ, Kim JS, Yoon J, Lee GH, Lee YW, et al. A toxicological study of HangAmDan-B in mice. J Acupunct Meridian Stud. 2011;4(1):54-60. https://doi.org/10.1016/S2005-2901(11)60007-1
  23. Xu R, Zhou B, Fung PCW, Li X. Recent advances in the treatment of colon cancer. Histol Histopathol. 2006;21(8):867-72.
  24. Nordman IC, Iyer S, Joshua AM, Clarke SJ. Advances in the adjuvant treatment of colorectal cancer. ANZ J Surg. 2006;76(5):373-80. https://doi.org/10.1111/j.1445-2197.2006.03726.x
  25. Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H. Inhibition of autophagy by 3-MA enhances the effect of 5-FUinduced apoptosis in colon cancer cells. Ann Surg Oncol. 2009;16(3):761-71. https://doi.org/10.1245/s10434-008-0260-0
  26. Padgett CL, Slesinger PA. GABAB receptor coupling to Gproteins and ion channels. Adv Pharmacol. 2010;58:123-47. https://doi.org/10.1016/S1054-3589(10)58006-2
  27. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature. 1997;386(6622):239-46. https://doi.org/10.1038/386239a0
  28. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396(6712):683-7. https://doi.org/10.1038/25360
  29. Schuller HM, Al-Wadei HA, Majidi M. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis. 2008;29(10):1979-85. https://doi.org/10.1093/carcin/bgn041
  30. Thaker PH, Yokoi K, Jennings NB, Li Y, Rebhun RB, Rousseau DL Jr, et al. Inhibition of experimental colon cancer metastasis by the GABA-receptor agonist nembutal. Cancer Biol Ther. 2005;4(7):753-8. https://doi.org/10.4161/cbt.4.7.1827
  31. Wan T, Huang W, Chen F. Baclofen, a GABAB receptor agonist, inhibits human hepatocellular carcinoma cell growth in vitro and in vivo. Life Sci. 2008;82(9-10):536-41. https://doi.org/10.1016/j.lfs.2007.12.014
  32. Schuller HM, Al-Wadei HA, Majidi M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer. 2008;112(4):767-78. https://doi.org/10.1002/cncr.23231

Cited by

  1. Inhibition of lung cancer growth by HangAmDan-B is mediated by macrophage activation to M1 subtype vol.13, pp.4, 2017, https://doi.org/10.3892/ol.2017.5730
  2. Inhibits Tumor Growth through Activating Macrophage to M1 Polarization vol.46, pp.06, 2018, https://doi.org/10.1142/S0192415X18500726
  3. Predicting MicroRNA Target Genes and Identifying Hub Genes in IIA Stage Colon Cancer Patients Using Bioinformatics Analysis vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/6341967