DOI QR코드

DOI QR Code

Lens Surgeries along the n-twisted Whitehead Link

Kadokami, Teruhisa;Maruyama, Noriko;Shimozawa, Masafumi

  • Received : 2010.02.20
  • Accepted : 2011.11.23
  • Published : 2012.09.23

Abstract

We determine lens surgeries (i.e. Dehn surgery yielding a lens space) along the n-twisted Whitehead link. To do so, we first give necessary conditions to yield a lens space from the Alexander polynomial of the link as: (1) n = 1 (i.e. the Whitehead link), and (2) one of surgery coefficients is 1, 2 or 3. Our interests are not only lens surgery itself but also how to apply the Alexander polynomial for this kind of problems.

Keywords

Dehn surgery;lens space;Reidemeister torsion;Alexander polynomial;Rolfsen move

References

  1. J. Berge, Some knots with surgeries yielding lens spaces, (Unpublished manuscript, 1990).
  2. M. Culler, M. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of Math., 125(1987), 237-300. https://doi.org/10.2307/1971311
  3. R. Fintushel and R. J. Stern, Constructing lens spaces by surgery on knots, Math. Z., 175(1980), no.1, 33-51. https://doi.org/10.1007/BF01161380
  4. H. Goda and M. Teragaito, Dehn surgeries on knots which yield lens spaces and genera of knots, Math. Proc. Cambridge Philos. Soc., 129(2000), No.3 , 501-515. https://doi.org/10.1017/S0305004100004692
  5. T. Kadokami, Reidemeister torsion and lens surgeries on knots in homology 3-spheres I, Osaka J. Math., 43(2006), no.4, 823-837.
  6. T. Kadokami, Reidemeister torsion of Seifert fibered homology lens spaces and Dehn surgery, Algebr. Geom. Topol., 7(2007), 1509-1529. https://doi.org/10.2140/agt.2007.7.1509
  7. T. Kadokami, Reidemeister torsion and lens surgeries on knots in homology 3-spheres II, Top. Appl., 155(2008), no.15 , 1699-1707. https://doi.org/10.1016/j.topol.2008.05.009
  8. T. Kadokami, Amphicheiral links with special properties, I, to appear in Jounal of Knot Theory and its Ramifications.
  9. T. Kadokami, Finite slope surgeries along the Milnor links, in preparation.
  10. T. Kadokami and M. Shimozawa, Dehn surgery along torus links, J. Knot Theory Ramif., 19(2010), 489-502. https://doi.org/10.1142/S0218216510007930
  11. T. Kadokami and Y. Yamada, Reidemeister torsion and lens surgeries on (-2, m, n)- pretzel knots, Kobe J. Math., 23(2006), 65-78.
  12. T. Kadokami and Y. Yamada, A deformation of the Alexander polynomials of knots yielding lens spaces, Bull. of Austral. Math. Soc., 75(2007), 75-89. https://doi.org/10.1017/S0004972700038995
  13. A. Kawauchi, A survey of Knot Theory, Birkhauser Verlag, (1996).
  14. R. Kirby, A calculus for framed links in $S^{3}$, Invent. Math., 45(1978), no.1, 35-56. https://doi.org/10.1007/BF01406222
  15. B. Martelli and C. Petronio, Dehn filling of the "magic" 3-manifold, Comm. Anal. Geom., 14(2006), No. 5, 969-1026. https://doi.org/10.4310/CAG.2006.v14.n5.a6
  16. N. Maruyama, On Dehn surgery along a certain family of knots, Jour. of Tsuda College, 19(1987), 261-280.
  17. L. Moser, Elementary surgery along a torus knot, Pacific J. Math., 38(1971), 737-745. https://doi.org/10.2140/pjm.1971.38.737
  18. P. Ozsvath and Z. Szabo, On knot Floer homology and lens space surgeries, Topology, 44(2005), 1281-1300. https://doi.org/10.1016/j.top.2005.05.001
  19. K. Reidemeister, Homotopieringe und Linsenraume, Abh. Math. Sem. Univ. Hamburg, 11(1935), 102-109. https://doi.org/10.1007/BF02940717
  20. D. Rolfsen, Rational surgery calculus: extension of Kirby's theorem, Pacific J. Math., 110(1984), 377-386 https://doi.org/10.2140/pjm.1984.110.377
  21. G. Torres, On the Alexander polynomial, Ann. of Math., 57(1953), 57-89. https://doi.org/10.2307/1969726
  22. V. G. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys, 41- 1(1986), 119-182.
  23. V. G. Turaev, Introduction to Combinatorial Torsions, Birkhauser Verlag, (2001).

Cited by

  1. Seifert surgery on knots via Reidemeister torsion and Casson–Walker–Lescop invariant vol.188, 2015, https://doi.org/10.1016/j.topol.2015.03.008
  2. LENS SPACE SURGERIES ALONG CERTAIN 2-COMPONENT LINKS RELATED WITH PARK’S RATIONAL BLOW DOWN, AND REIDEMEISTER-TURAEV TORSION vol.96, pp.01, 2014, https://doi.org/10.1017/S1446788713000372