DOI QR코드

DOI QR Code

DYNAMIC BIFURCATION OF THE PERIODIC SWIFT-HOHENBERG EQUATION

  • Received : 2011.05.03
  • Published : 2012.09.30

Abstract

In this paper we study the dynamic bifurcation of the Swift-Hohenberg equation on a periodic cell ${\Omega}=[-L,L]$. It is shown that the equations bifurcates from the trivial solution to an attractor $\mathcal{A}_{\lambda}$ when th control parameter ${\lambda}$ crosses the critical value. In the odd periodic case $\mathcal{A}_{\lambda}$ is homeomorphic to $S^1$ and consists of eight singular points and thei connecting orbits. In the periodic case, $\mathcal{A}_{\lambda}$ is homeomorphic to $S^1$, an contains a torus and two circles which consist of singular points.

Keywords

Swift-Hohenberg equation;attractor bifurcation

References

  1. E. Bodenschatz, W. Pesch, and G. R Ahlers, Recent Developments in Rayleigh-Benard Convections, Annual review of fluid mechanics, Vol. 32, 709-778, Annu. Rev. Fluid Mech., 32, Annual Reviews, Palo Alto, CA, 2000.
  2. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993), 851-1112. https://doi.org/10.1103/RevModPhys.65.851
  3. P. G. Daniels, D. Ho, and A. C. Skeldon, Solutions for nonlinear convection in the presence of a lateral boundary, Phys. D 178 (2003), no. 1-2, 83-102. https://doi.org/10.1016/S0167-2789(02)00789-3
  4. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer, 1981.
  5. C.-H. Hsia and X. Wang, On a Burgers' type equation, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 5, 1121-1139. https://doi.org/10.3934/dcdsb.2006.6.1121
  6. T. Ma, J. Park, and S. Wang, Dynamic bifurcation of the Ginzburg-Landau equation, SIAM J. Appl. Dyn. Syst. 3 (2004), 620-635. https://doi.org/10.1137/040603747
  7. T. Ma, J. Park, and S. Wang, Addendum to the paper "Two-dimensional infinite prandtl number convec-tion: structure of bifurcated solutions, J. Nonlinear Sci. 17 (2007), no. 3, 199-220", arXiv:0709.1740v1. https://doi.org/10.1007/s00332-005-0747-9
  8. T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific, 2005.
  9. T. Ma and S. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Science Press, 2007.
  10. T. Ma and S. Wang, Rayleigh-Benard convection: dynamics and structure in the physical space, Commun. Math. Sci. 5 (2007), no. 3, 553-574. https://doi.org/10.4310/CMS.2007.v5.n3.a3
  11. T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B 11 (2009), 741-784. https://doi.org/10.3934/dcdsb.2009.11.741
  12. L. A. Peletier and V. Rottschafer, Pattern selection of solutions of the Swift-Hohenberg equation, Phys. D 194 (2004), no. 1-2, 95-126. https://doi.org/10.1016/j.physd.2004.01.043
  13. L. A. Peletier and J. F. Williams, Some Canonical Bifurcations in the Swift-Hohenberg Equation, SIAM J. Appl. Dyn. Syst. 6 (2007), no. 1, 208-235. https://doi.org/10.1137/050647232
  14. J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977), 319-328. https://doi.org/10.1103/PhysRevA.15.319
  15. A.-M.Wazwaz, New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations, Appl. Math. Comput. 182 (2006), no. 2, 1642-1650. https://doi.org/10.1016/j.amc.2006.06.002
  16. M. Yari, Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations, Discrete Contin. Dyn. Syst. Ser. B 7 (2007), no. 2, 441-456.

Cited by

  1. Dynamical bifurcation of the damped Kuramoto–Sivashinsky equation vol.421, pp.1, 2015, https://doi.org/10.1016/j.jmaa.2014.07.009
  2. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period vol.20, pp.7, 2015, https://doi.org/10.3934/dcdsb.2015.20.1933
  3. DYNAMICAL BIFURCATION OF THE ONE DIMENSIONAL MODIFIED SWIFT-HOHENBERG EQUATION vol.52, pp.4, 2015, https://doi.org/10.4134/BKMS.2015.52.4.1241
  4. Bifurcation and final patterns of a modified Swift-Hohenberg equation vol.22, pp.7, 2017, https://doi.org/10.3934/dcdsb.2017087
  5. DYNAMICAL BIFURCATION OF THE ONE-DIMENSIONAL CONVECTIVE CAHN-HILLIARD EQUATION vol.22, pp.4, 2014, https://doi.org/10.11568/kjm.2014.22.4.621
  6. Dynamical Bifurcation of the Generalized Swift–Hohenberg Equation vol.25, pp.08, 2015, https://doi.org/10.1142/S0218127415500959

Acknowledgement

Supported by : Korea Research Foundation