Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 49 Issue 5
- /
- Pages.939-947
- /
- 2012
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL
- Abdalla, Hiba (Universite de Grenoble 1 Institut Fourier Laboratoire de Mathematiques associe au CNRS)
- Received : 2011.05.09
- Published : 2012.09.30
Abstract
In this paper, we give a generalization of the embeddings of Riemannian manifolds via their heat kernel and via a finite number of eigenfunctions. More precisely, we embed a family of Riemannian manifolds endowed with a time-dependent metric analytic in time into a Hilbert space via a finite number of eigenfunctions of the corresponding Laplacian. If furthermore the volume form on the manifold is constant with time, then we can construct an embedding with a complete eigenfunctions basis.
File
References
- P. Berard, Sur un lemme de perturbation, to appear.
- Volume des ensembles nodaux des fonctions propres du laplacien, Bony- Sjostrand-Meyer seminar, 1984-1985, pages Exp. No 14, 10. Ecole polytech., Palaiseau, 1985.
- P. Berard, G. Besson, and S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct Anal. 4 (1994), no. 4, 373-398. https://doi.org/10.1007/BF01896401
- R. R. Coifman and Stephane Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (2006), no. 1, 5-30. https://doi.org/10.1016/j.acha.2006.04.006
- M. P. do Carmo, Riemannian Geometry, Birkhauser, 1992.
- T. Kato, Perturbation Theory for Linear Operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976.
- J. Korevaar, Tauberian Theory, Springer-Verlag, Berlin, 2004.
- C. Morlet, Le lemme de Thom et les theoremes de plongement de Whitney. II, Quelques ouverts fondamentaux des espaces d'applications. Seminaire Henri Cartan, 1961/62, Exp. 5, page 6. Secretariat mathematique, Paris, 1961/1962.
- F. Rellich, Perturbation Theory of Eigenvalue Problems, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York, 1969.
Cited by
- Embeddings of Riemannian Manifolds with Heat Kernels and Eigenfunctions vol.69, pp.3, 2016, https://doi.org/10.1002/cpa.21565
- The embedding dimension of Laplacian eigenfunction maps vol.37, pp.3, 2014, https://doi.org/10.1016/j.acha.2014.03.002