DOI QR코드

DOI QR Code

EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL

  • Abdalla, Hiba (Universite de Grenoble 1 Institut Fourier Laboratoire de Mathematiques associe au CNRS)
  • Received : 2011.05.09
  • Published : 2012.09.30

Abstract

In this paper, we give a generalization of the embeddings of Riemannian manifolds via their heat kernel and via a finite number of eigenfunctions. More precisely, we embed a family of Riemannian manifolds endowed with a time-dependent metric analytic in time into a Hilbert space via a finite number of eigenfunctions of the corresponding Laplacian. If furthermore the volume form on the manifold is constant with time, then we can construct an embedding with a complete eigenfunctions basis.

References

  1. P. Berard, Sur un lemme de perturbation, to appear.
  2. Volume des ensembles nodaux des fonctions propres du laplacien, Bony- Sjostrand-Meyer seminar, 1984-1985, pages Exp. No 14, 10. Ecole polytech., Palaiseau, 1985.
  3. P. Berard, G. Besson, and S. Gallot, Embedding Riemannian manifolds by their heat kernel, Geom. Funct Anal. 4 (1994), no. 4, 373-398. https://doi.org/10.1007/BF01896401
  4. R. R. Coifman and Stephane Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (2006), no. 1, 5-30. https://doi.org/10.1016/j.acha.2006.04.006
  5. M. P. do Carmo, Riemannian Geometry, Birkhauser, 1992.
  6. T. Kato, Perturbation Theory for Linear Operators, Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132. Springer-Verlag, Berlin-New York, 1976.
  7. J. Korevaar, Tauberian Theory, Springer-Verlag, Berlin, 2004.
  8. C. Morlet, Le lemme de Thom et les theoremes de plongement de Whitney. II, Quelques ouverts fondamentaux des espaces d'applications. Seminaire Henri Cartan, 1961/62, Exp. 5, page 6. Secretariat mathematique, Paris, 1961/1962.
  9. F. Rellich, Perturbation Theory of Eigenvalue Problems, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz. Gordon and Breach Science Publishers, New York, 1969.

Cited by

  1. Embeddings of Riemannian Manifolds with Heat Kernels and Eigenfunctions vol.69, pp.3, 2016, https://doi.org/10.1002/cpa.21565
  2. The embedding dimension of Laplacian eigenfunction maps vol.37, pp.3, 2014, https://doi.org/10.1016/j.acha.2014.03.002