• Pyo, Jun-Cheol (Department of Mathematics Pusan National University)
  • Received : 2011.07.06
  • Published : 2012.09.30


We construct three kinds of complete embedded singly-periodic minimal surfaces in $\mathbb{H}^2{\times}\mathbb{R}$. The first one is a 1-parameter family of minimal surfaces which is asymptotic to a horizontal plane and a vertical plane; the second one is a 2-parameter family of minimal surfaces which has a fundamental piece of finite total curvature and is asymptotic to a finite number of vertical planes; the last one is a 2-parameter family of minimal surfaces which fill $\mathbb{H}^2{\times}\mathbb{R}$ by finite Scherk's towers.


  1. J. Choe and R. Gulliver, Embedded minimal surfaces and total curvature of curves in a manifold, Math. Res. Lett. 10 (2003), no. 2-3, 343-362.
  2. B. Daniel, Isometric immersions into $S^{n}{\times}R\;and\;H^{n}{\times}R$ and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6255-6282.
  3. L. Hauswirth, Minimal surfaces of Riemann type in three-dimensional product manifolds, Pacific J. Math. 224 (2006), no. 1, 91-117.
  4. L. Hauswirth, R. Sa Earp, and E. Toubiana, Associate and conjugate minimal immersions in M ${\times}$ R, Tohoku Math. J. (2) 60 (2008), no. 2, 267-286.
  5. D. Joyce, Tiling the hyperbolic plane,
  6. H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988), no. 1, 83-114.
  7. Y. Kim, S. Koh, H. Shin, and S. Yang, Helicoids in $S^{2}{\times}R\;and\;H^{2}{\times}R$, Pacific J. Math. 242 (2009), no. 2, 281-297.
  8. F. Morabito and M. Rodriguez, Saddle tower in $H^{2}{\times}R$, to appear Journal de l'Institut de Mathematiques de Jussieu.
  9. C. B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49 (1948), 807-851.
  10. B. Nelli and H. Rosenberg, Minimal surfaces in $H^{2}{\times}R$, Bull. Braz. Math. Soc. (N.S.) 33 (2002), no. 2, 263-292.
  11. J. Pyo, New complete embedded minimal surfaces in $H^{2}{\times}R$, Ann. Global Anal. Geom. 40 (2011), no. 2, 167-176.
  12. H. Rosenberg, Minimal surfaces in $M^{2}{\times}R$, Illinois J. Math. 46 (2002), no. 4, 1177-1195.
  13. R. Sa Earp and E. Toubiana, Screw motion surfaces in $H^{2}{\times}R$ and $S^{2}{\times}R$, Illinois J. Math. 49 (2005), no. 4, 1323-1362.
  14. R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791-809.

Cited by

  1. Minimal rotational surfaces in the product space ℚ𝜀2 × 𝕊1 vol.29, pp.08, 2018,