DOI QR코드

DOI QR Code

INTERPOLATION PROBLEMS FOR OPERATORS WITH CORANK IN ALG L

Kang, Joo-Ho

  • Received : 2012.07.10
  • Accepted : 2012.07.27
  • Published : 2012.09.25

Abstract

Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. And let X and Y be operators acting on a Hilbert space $\mathcal{H}$. Let $sp(x)=\{{\alpha}x\;:\;{\alpha}{\in}\mathcal{C}\}$ $x{\in}\mathcal{H}$. Assume that $\mathcal{H}=\overline{range\;X}{\oplus}sp(h)$ for some $h{\in}\mathcal{H}$ and < $h$, $E^{\bot}Xf$ >= 0 for each $f{\in}\mathcal{H}$ and $E{\in}\mathcal{L}$. Then there exists an operator A in Alg$\mathcal{L}$ such that AX = Y if and only if $sup\{\frac{{\parallel}E^{\bot}Yf{\parallel}}{{\parallel}E^{\bot}Yf{\parallel}}\;:\;f{\in}H,\;E{\in}\mathcal{L}\}$ = K < ${\infty}$. Moreover, if the necessary condition holds, then we may choose an operator A such that AX = Y and ${\parallel}||A{\parallel}=K$.

Keywords

Interpolation Problem;Subspace Lattice;Alg$\mathcal{L}$;CSL-Alg$\mathcal{L}$

References

  1. Anoussis, M.; Katsoulis. E.; Moore, R. L.; Trent, T. T., Interpolation problems for ideals in nest algebras, Math. Proc. Camb. Phil. Soc. 117(1992), 151-160.
  2. Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17(1966), 413-415. https://doi.org/10.1090/S0002-9939-1966-0203464-1
  3. Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. 20(1980), 121-126.
  4. Hopenwasser, A., Hilbert-Schmidt interpolation in CSL-algebras, Illinois J. Math. 33(1989), 657-672.
  5. Jo, Y. S. and Kang, J. H., Interpolation problems in CSL-algebras AlgL, Rocky mountain J. Math. 33, no 3 (2003), 903-914. https://doi.org/10.1216/rmjm/1181069934
  6. Jo, Y. S. and Kang, J. H., Interpolation problems in AlgL, J. of appl. Math. and computing. 18(2005), 513-524.
  7. Jo, Y. S.; Kang, J. H.; Kim, K. S., On operator interpolation problems, J. of K. M. S. 41, no 2 (2004), .
  8. Jo, Y. S.; Kang, J. H.; Moore, R. L.; Trent, T. T., Interpolation in self-adjoint settings, Proc. Amer. Math. Soc. 130, no 11, 3269-3281.
  9. Jo, Y. S.; Kang, J. H. ; Park, Dongwan, Equations AX = Y and Ax = y in AlgL, J.Korean Math. Soc. 43(2006), 399-411. https://doi.org/10.4134/JKMS.2006.43.2.399
  10. Kadison, R., Irreducible Operator Algebras, Pro. Nat. Acad. Sci. U. S. A. (1957), 273-276.
  11. Katsoulis, E.; Moore, R. L.; Trent, T. T., Interpolation in nest algebras and applications to operator Corona Theorems, J. Operator Theory. 29(1993), 115- 123.
  12. Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc. 19(1969), 45-68. https://doi.org/10.1112/plms/s3-19.1.45
  13. Moore, R. and Trent, T. T., Linear equations in subspaces of operators, Proc. of A.M.S.. 128, no 3 (2000), 781-788. https://doi.org/10.1090/S0002-9939-99-05064-9
  14. Moore, R. and Trent, T. T., Interpolation in in ated Hilbert spaces, Proc. of A.M.S.. 127, no 2 (1999), 499-507. https://doi.org/10.1090/S0002-9939-99-04597-9

Acknowledgement

Supported by : Daegu University