DOI QR코드

DOI QR Code

COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY

Lee, Sik;Han, Sang-Eon

  • Received : 2012.08.10
  • Accepted : 2012.08.29
  • Published : 2012.09.25

Abstract

Since there are several kinds of continuities of maps between digital spaces, the paper compares them, which can play an important role in digital topology and discrete geometry.

Keywords

digital topology;Khalimsky topology;digital continuity;digital isomorphism (homeomorphism)

References

  1. P. Alexandorff, Diskrete Raume, Mat. Sb. 2 (1937) 501-518.
  2. L. Boxer, Digitally continuous functions Pattern Recognition Letters 15 (1994) 833-839. https://doi.org/10.1016/0167-8655(94)90012-4
  3. U. Eckhardt, L. J. Latecki, Topologies for digital spaces $Z^{2}$ and $Z^{3}$, Computer Vision Image Understanding 95(2003) 261-262.
  4. N.D. Georgiou, S.E. Han, Generalized topological function spaces and a classication of generalized computer topological spaces, Filomat 26(3) (2012) 539-552. https://doi.org/10.2298/FIL1203539G
  5. S.E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (1-3) (2005) 73-91. https://doi.org/10.1016/j.ins.2004.03.018
  6. S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1)(2005) 115-129 .
  7. S.E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008) 923-952. https://doi.org/10.4134/JKMS.2008.45.4.923
  8. S.E. Han, Equivalent ($k_{0}, k_{1}$)-covering and generalized digital lifting, Information Sci. 178 (2008) 550-561. https://doi.org/10.1016/j.ins.2007.02.004
  9. S.E. Han, The k-homotopic thinning and a torus-like digital image in $Z^{n}$, J. Math. Imaging Vision 31 (2008) 1-16. https://doi.org/10.1007/s10851-007-0061-2
  10. S.E. Han, KD-($k_{0}, k_{1}$)-homotopy equivalence and its applications, J. Korean Math. Soc. 47 (2010) 1031-1054. https://doi.org/10.4134/JKMS.2010.47.5.1031
  11. S.E. Han, Extension problem of several continuties in computer topology, Bull. Korean Math. Soc. 47 (2010) 915-932. https://doi.org/10.4134/BKMS.2010.47.5.915
  12. S. E. Han, Category which is suitable for studying Khalimsky topological spaces with digital connectivity, Honam Mathematical Journal 33(2) (2011) 231-246. https://doi.org/10.5831/HMJ.2011.33.2.231
  13. S.E. Han, Homotopy equivalence which is suitable for studying Khalimsky nD spaces, Topology Appl. 159 (2012) 1705-1714. https://doi.org/10.1016/j.topol.2011.07.029
  14. S.E. Han, N.D. Georgiou, On computer topological function space, J. Korean Math. Soc. 46 (2009) 841-857. https://doi.org/10.4134/JKMS.2009.46.4.841
  15. Jeang Min Kang, S.E. Han, Compression of Khalimsky topological spaces, Filomat, in press.
  16. E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology and Its Applications, 36(1) (1991) 1-17.
  17. In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Appl. Math. 110 (2010) 399-408. https://doi.org/10.1007/s10440-008-9422-0
  18. T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
  19. A. Rosenfeld, Arcs and curves in digital pictures, Jour. of the ACM, 20 (1973) 81-87. https://doi.org/10.1145/321738.321745

Acknowledgement

Supported by : Chonnam National University