Bulletin of the Korean Chemical Society
- Volume 33 Issue 9
- /
- Pages.3025-3032
- /
- 2012
- /
- 0253-2964(pISSN)
- /
- 1229-5949(eISSN)
DOI QR Code
Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery
- Bae, Joon-Won (Department of Applied Chemistry, Dongduk Women's University) ;
- Park, Jong-Nam (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST))
- Received : 2012.04.06
- Accepted : 2012.06.25
- Published : 2012.09.20
Abstract
Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.
File
References
- Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47, 2930. https://doi.org/10.1002/anie.200702505
- Guo, Y.-G.; Hu, J.-S.; Wan, L.-J. Adv. Mater. 2008, 20, 2878. https://doi.org/10.1002/adma.200800627
- Brousselya, M.; Biensanb, P.; Simon, B. Electrochimica Acta 1999, 45, 22.
- Noh, M.; Kwon, Y.; Lee, H.; Cho, J.; Kim, Y.; Kim, M. G. Chem. Mater. 2005, 17, 1926. https://doi.org/10.1021/cm0481372
- Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
- Zhang, W.-M.; Hu, J.-S.; Guo, Y.-G.; Zheng, S.-F.; Zhong, L.-S.; Song, W.-G.; Wan, L.-J. Adv. Mater. 2008, 20, 1160. https://doi.org/10.1002/adma.200701364
- Lou, X. W.; Li, C. M.; Archer, L. A. Adv. Mater. 2009, 21, 2536. https://doi.org/10.1002/adma.200803439
- Deng, D.; Lee, J. Y. Angew. Chem. Int. Ed. 2009, 48, 1660. https://doi.org/10.1002/anie.200803420
- Chen, G.; Wang, Z.; Xia, D. Chem. Mater. 2008, 20, 6951. https://doi.org/10.1021/cm801853c
- Grigoriants, I.; Sominski, L.; Li, H.; Ifargan, I.; Aurbach, D.; Gedanken, A. Chem. Commun. 2005, 921.
- Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
- Guo, Y.-G.; Hu, Y.-S.; Sigle, W.; Maier, J. Adv. Mater. 2007, 19, 2087. https://doi.org/10.1002/adma.200602828
- Wang, D.-W.; Fang, H.-T.; Li, F.; Chen, Z.-G.; Zhong, Q.-S.; Lu, G. Q.; Cheng, H.-M. Adv. Funct. Mater. 2008, 18, 3787. https://doi.org/10.1002/adfm.200800635
- Huang, Y.; Cai, H.; Feng, D.; Gu, D.; Deng, Y.; Tu, B.; Wang, H.; Webleyb, P. A.; Zhao, D. Chem. Commun. 2008, 2641.
- Mochida, I.; Ku, C.-H.; Yoon, S.-H.; Korai, Y. J. Power Sources 1998, 75, 214. https://doi.org/10.1016/S0378-7753(98)00101-3
- Teixidor, G. T.; Zaouk, R. B.; Park, B. Y.; Madou, M. J. J. Power Sources 2008, 183, 730. https://doi.org/10.1016/j.jpowsour.2008.05.065
- Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Science 1995, 270, 590. https://doi.org/10.1126/science.270.5236.590
- Sato, K.; Noguchi, M.; Demachi, A.; Oki, N.; Endo, M. Science 1994, 264, 556. https://doi.org/10.1126/science.264.5158.556
- Bonino, F.; Brutti, S.; Reale, P.; Scrosati, B.; Gherghel, L.; Wu, J.; Muellen, K. Adv. Mater. 2005, 17, 743. https://doi.org/10.1002/adma.200401006
- Kavan, L. Chem. Rev. 1997, 97, 3061. https://doi.org/10.1021/cr960003n
- Wang, C. S.; Wu, G. T.; Zhang, X. B.; Qi, Z. F.; Li, W. Z. J. Electrochem. Soc. 1998, 145, 2751. https://doi.org/10.1149/1.1838709
- Lee, H. Y.; Lee, S. M. Electrochem. Commun. 2004, 6, 465. https://doi.org/10.1016/j.elecom.2004.03.005
- Wang, G. X.; Yao, J.; Liu, H. K. Electrochem. Solid-State Lett. 2004, 7, A250. https://doi.org/10.1149/1.1764411
- Li, H.; Huang, X.; Chen, L.; Wu, Z.; Liang, Y. Electrochem. Solid- State Lett. 1999, 2, 547. https://doi.org/10.1149/1.1390899
- Kim, I. S.; Kumta, P. N. J. Power Sources 2004, 136, 145. https://doi.org/10.1016/j.jpowsour.2004.05.016
- Wang, G. X.; Ahn, J. H.; Yao, J.; Bewlay, S.; Liu, H. K. Electrochem. Commun. 2004, 6, 689. https://doi.org/10.1016/j.elecom.2004.05.010
- Dimov, N.; Kugino, S.; Yoshio, M. J. Power Sources 2004, 136, 108. https://doi.org/10.1016/j.jpowsour.2004.05.012
- Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Mueller, J. O.; Schloegl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. https://doi.org/10.1002/anie.200704287
- Ng, S. H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H. K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
- Holzapfel, M.; Buqa, H.; Scheifele, W.; Novák, P.; Petrat, F.-M. Chem. Commun. 2005, 1566.
- Chan, C. K.; Peng, H.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. Nat. Nanotechnol. 2008, 3, 31. https://doi.org/10.1038/nnano.2007.411
- Ma, H.; Cheng, F.; Chen, J.; Zhao, J.; Li, C.; Tao, Z.; Liang, J. Adv. Mater. 2007, 19, 4067. https://doi.org/10.1002/adma.200700621
- Su, F.; Zhao, X. S.; Wang, Y.; Zeng, J.; Zhou, Z.; Lee, J. Y. J. Phys. Chem. B 2005, 109, 20200. https://doi.org/10.1021/jp0541967
- Kim, T.; Mo, Y. H.; Nahm, K. S.; Oh, S. M. J. Power Sources 2006, 162, 1275. https://doi.org/10.1016/j.jpowsour.2006.07.062
- Lee, J.-H.; Kim, W.-J.; Kim, J.-Y.; Lim, S.-H.; Lee, S.-M. J. Power Sources 2008, 176, 353. https://doi.org/10.1016/j.jpowsour.2007.09.119
- Ng, S. H.; Wang, J.; Wexler, D.; Chew, S. Y.; Liu, H. K. J. Phys. Chem. C 2007, 111, 11131. https://doi.org/10.1021/jp072778d
- Peng, K.; Jie, J.; Zhang, W.; Lee, S.-T. Appl. Phys. Lett. 2008, 93, 033105. https://doi.org/10.1063/1.2929373
- Kang, D.-K.; Corno, J. A.; Gole, J. L.; Shin, H.-C. J. Electrochem. Soc. 2008, 155, A276. https://doi.org/10.1149/1.2836570
- Hasegawa, T.; Mukai, S. R.; Shirota, Y.; Tamon, H. Carbon 2004, 42, 2573. https://doi.org/10.1016/j.carbon.2004.05.050
- Eom, J. Y.; Park, J. W.; Kwon, H. S.; Rajendran, S. J. Electrochem. Soc. 2006, 153, A1678. https://doi.org/10.1149/1.2213528
- Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Lui, Y. Electrochem. Commun. 2006, 8, 51. https://doi.org/10.1016/j.elecom.2005.08.024
- Zhang, Y.; Zhange, X. G.; Zhang, H. L.; Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M. Electrochimica Acta 2006, 51, 4994. https://doi.org/10.1016/j.electacta.2006.01.043
- Wang, W.; Kumta, P. N. J. Power Sources 2007, 172, 650. https://doi.org/10.1016/j.jpowsour.2007.05.025
- Nazar, L. F.; Crosnier, O. In Lithium Batteries Sciences and Technology; Nazri, G.-A., Pistoria, G., Eds.; Kluwer Academic/ Plenum: Boston, 2004; p 112.
- Lee, J.; Bae, J.; Heo, J.; Han, I. T.; Cha, S. N.; Kim, D. K.; Yang, M.; Han, H. S.; Jeon, W. S.; Chung, J. J. Electrochem. Soc. 2009, 156, A905. https://doi.org/10.1149/1.3223963
- Tonanon, N.; Intarapanya, W.; Tanthapanichakoon, W.; Nishihara, H.; Mukai, S. R.; Tamon, H. J. Porous Mater. 2008, 15, 265. https://doi.org/10.1007/s10934-006-9082-2
- Li, X.; Su, Y.; Zhou, X.; Mo, X. Colloids Surf. B 2009, 69, 221. https://doi.org/10.1016/j.colsurfb.2008.11.031
- Jang, J.; Oh, J. Adv. Funct. Mater. 2005, 15, 494. https://doi.org/10.1002/adfm.200400095
- Bae, J. Colloid Polym Sci. 2011, 289, 1233. https://doi.org/10.1007/s00396-011-2449-1
- Jang, J.; Oh, J. Adv. Mater. 2004, 16, 1650. https://doi.org/10.1002/adma.200400032
- Aurbach, D.; Nimberger, A.; Markovsky, B.; Levi, E.; Sominski, E.; Gedanken, A. Chem. Mater. 2002, 14, 4155. https://doi.org/10.1021/cm021137m
- Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 2430. https://doi.org/10.1002/adfm.201002576
- Kang, E.; Jung, Y. S.; Kim, G.; Chun, J.; Wiesner, U.; Dillon, A. C.; Kim, J. K.; Lee, J. Adv. Funct. Mater. 2011, 21, 4349. https://doi.org/10.1002/adfm.201101123
Cited by
- A Review on Materials Derived from Polystyrene and Different Types of Nanoparticles vol.54, pp.17, 2015, https://doi.org/10.1080/03602559.2015.1038838
- Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries vol.9, pp.1, 2014, https://doi.org/10.1186/1556-276X-9-360