Effect of Buffers on Citric Acid Production by Aspergillus niger NRRL 567 in Solid Substrate Fermentation

Aspergillus niger NRRL 567을 이용한 고체배양에서 완충용액이 구연산 생산에 미치는 영향

  • Kim, Jin-Woo (Department of Biosystems Engineering, McGill University)
  • 김진우 (맥길대학교 바이오시스템공학과)
  • Received : 2012.03.01
  • Accepted : 2012.04.20
  • Published : 2012.10.01


In the submerged fermentation of fungi, it was known pH had significant effect on the citric acid production. Various growth conditions were applied with different buffer on citric acid production by Aspergillus niger NRRL 567 grown on peat moss to find the optimum pH and most effective buffer solution. The initial pHs of different buffer solutions significantly influenced on the citric acid production and A. niger NRRL 567 produced citric acid more efficiently at high pHs. A phosphate buffer and a carbonate buffer with pH 8.6 and pH 10.0 were identified as suitable buffer solutions for citric acid production. The maximal citric acid production of 564.3 g/kg solid substrate was achieved employing carbonate buffer at pH 10.0.

곰팡이균을 이용한 구연산 생산에 있어 액체배양의 초기 pH는 구연산 생산에 유의한 영향을 미친다고 알려져 있다. 본 연구에서는 고체배양에서 Aspergillus niger를 이용한 구연산 생산에 여러 pH의 완충용액이 구연산 생산에 미치는 영향을 밝혀 최적의 완충용액을 찾고자 연구하였다. 실험에 적용된 여러가지 완충용액은 구연산 생산에 영향을 미치며 높은 초기 pH 조건에서 구연산 생산성이 우수한 것으로 나타났다. 여러가지 완충용액 중, phosphate (pH 8.6) 완충용액과 carbonate 완충용액(pH 10.0)이 고체발효에서 구연산 생산에 가장 적합함을 알 수 있었다. Carbonate 완충용액(pH 10.0)을 사용하여 고체배지의 초기 pH를 6.8으로 하였을 경우, 최대 구연산 생산인 564.3 g/kg solid substrate 얻을 수 있었다. 또한, 염기 또는 산을 사용하여 고체 배지의 초기 pH를 4.42로 조정한 배지에 비해 phophate 완충용액을 사용한 pH 4.48의 고체배지에서 구연산 생산성이 1.5배 증가함을 알 수 있었다. 이는 완충용액의 사용이 구연산 생산에 의한 배지의 산성화를 방지해 세포성장과 생산성을 높였다고 결론지을 수 있다.



  1. Robinson, T., Singh, D. and Nigam, P., "Solid-state Fermentation; a Promising Microbial Technology for Secondary Metabolite Production," Appl. Microbiol. Biotechnol., 55, 284(2001).
  2. Fujio, Y., Ogata, M. and Ueda, S., "Ethanol Fermentation of Raw Cassava Starch with Rhizopus Koji in a Gas Circulation Type Fermentor," Biotechnol. Bioeng., 27, 1270(1985).
  3. Tengerdy, R. P., "Solid State Fermentation," Trends Biotechnol., 3, 96(1985).
  4. Omori, T., Takeshima, N. and Shimoda, M., "Formation of Acid-Labile $\alpha$-Amylase During Barley-kogi Production," J. Ferm. Bioeng., 78, 27(1994).
  5. Bellon-Maurel, V., Orliac, O. and Christen, P., "Sensor and Measurements in Solid State Fermentation: a Review," Process Biochem., 38, 881(2003).
  6. Szakacs, G. and Tengerdy, R. P., "Production of Cellulose and Xylanase with Selected Filamentous Fungi by Solid Substrate Fermentation," ACS sym. series. Washington D.C., 175(1996).
  7. Gutierrez-Correa, M., Portal, L., Moreno, P. and Tengerdy, R. P., "Mixed Culture Solid Substrate Fermentation of Trichoderma reesei with Aspergillus niger on Sugar Cane Bagasse," Bioresour. Technol., 68, 173(1999).
  8. Ellaiah, P., Srinivasulu, B. and Adinarayana, K., "Optimization Studies on Neomycin Production by Mutant Strain Streptomyces Marinesis in Solid State Fermentation," Process Biochem., 39, 529(2004).
  9. Goes, A. P. and Sheppard, J. D., "Effect of Surfactant on $\alpha$-Amylase Production in a Solid Substrate Fermentation Process," J. Chem. Technol. Biotechnol., 73, 709(1999).
  10. Barrington, S., Kim, J. S., Wang, L. and Kim, J. W., "Optimization of Citric Acid Production by A. niger Grown in a Column Bioreactor," Korean J. Chem. Eng., 29, 2(2009).
  11. Rezaei, P. S., Darzi, G. N. and Shafaghat, H., "Optimization of the Fermentation Condition and Partial Characterization for Acido-Thermophilic $\alpha$-Amylase from Aspergillus Niger NCIM 548," Korean J. Chem. Eng., 27, 3(2010).
  12. Hang, Y. D., Luh, B. S. and Woodams, E. E., "Microbial Production of Citric Acid by Solid State Fermentation of Kiwifruit Peel," J. Food Sci., 52, 226(1987).
  13. Hang, Y. D. and Woodams, E. E., "Production of Citric Acid from Corncobs by Aspergillus niger ," Bioresour. Technol., 65, 251(1998).
  14. Kumar, D., Jain, V. K., Shanker, G. and Srivastava, A., "Utilisation of Fruits Waste for Citric Acid Production by Solid State Fermentation," Process Biochem., 38, 1731(2003).
  15. Roukas, T., "Citric and Gluconic Acid Production from Fig by Aspergillus niger Using Solid-State Fermentation," J. Ind. Microbio. Biotechnol., 25, 298(2000).
  16. Uyar, F. and Baysal, Z., "Production and Optimization of Process Parameters for Alkaline Protease Production by a Newly Isolated Bacillus sp. Under Solid State Fermentation," Process Biochem., 39, 1893 (2003).
  17. Fawole, O. B. and Odunfa, S. A., "Some Factors Affecting Production of Pectin Enzymes by Aspergillus niger," Int. Biodeterioration, 51, 223(2003).
  18. Kamini, N. R., Mala, J. G. S. and Puvanakrishnan, R., "Lipase Production from Aspergillus niger, by Solid-state Fermentation Using Gingelly Oil Cake," Process Biochem., 33, 505(1998).
  19. Watanabe, T., Suzuki, A., Nakagawa, H., Kirimura, K. and Usami S., "Citric Acid Production from Cellulose Hydrolysate by 2-Deoxyglucose Resistant Mutant Strain of Aspergillus niger," Bioresour. Technol., 66, 271(1998).
  20. Adham, Z., "Attempts at Improving Citric Acid Fermentation by Aspergillus niger in Beet-Molasses Medium," Biores. Technol., 84, 97(2002).
  21. Lesniak, W., Pietkiewicz, J. and Podgorski, W., "Citric Acid Fermentation from 241 Starch and Dextrose Syrups by a Trace Metal Resistant Mutant of Aspergillus niger,"Biotechnol. Lett., 24, 1065(2002).
  22. Nagel, F., Oostra, J., Tramper, J. and Rinzema, A., "Improved Model System for Solid-Substrate Fermentation: Effect of pH, Nutrients and Buffer on Fungal Growth Rate," Process Biochem., 35, 69(1999).
  23. Jianlong, W. and Ping, L., "Phytate as a Stimulator of Citric Acid Production by Aspergillus niger," Process Biochem., 33, 313 (1998).
  24. Abou-Zeid, A. and Ashy, M., "Production of Citric Acid: a Review," Agr. Wastes, 9, 51(1984).
  25. Manohar, B. and Divakar, S., "Application of Central Composite Rotatable Design to Lipase Catalysed Synthesis of m-cresyl Acetate," W. J. Microbiol. Biotechnol., 18, 745(2002).
  26. Barrington, S., Choiniere, D., Trigui, M. and Knight, W., "Effect of Carbon Source on Compost Nitrogen and Carbon Losses," Biores. Technol., 83, 189(2002).
  27. Marier, J. R. and Boulet, M., "Direct Determination of cItric Acid In Milk with Improved Pyridine-Acetic Anhydride Method," Dairy Sci., 41, 1683(1958).
  28. Miller, G. L., "Use of Dinitrosalycilic Acid Reagent for Determination of Reducing Sugars," Ana. Chem., 31, 426(1959).
  29. Rodrigues, C., Vandenberghe, L. P., Teodoro, J., Pandey, A. and Soccol, C. R., "Improvement on Citric Acid Production in Solidstate Fermentation by Aspergillus niger LPB BC Mutant Using Citric Pulp," Appl. Biochem. Biotechnol., 158, 72(2009).
  30. Baker, S. E., Aspergillus niger Genomics: Past, Present and into the Future," Medical Mycology, 44, S17(2006).
  31. Yuan, X. L., Van der Kaaij, R. M., Van den Hondel, C. A., Punt, P. J., Van der Maarel, M. J., Dijkhuizen, L. and Ram, A. F., "Aspergillus niger Genome-Wide Analysis Reveals a Large Number of Novel Alpha-Glucan Acting Enzymes with Unexpected Expression Profiles," Mol Genet Genomics, 279, 545 (2008).

Cited by

  1. Optimization of Fermentation Conditions for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Agricultural by Products vol.52, pp.3, 2014,