DOI QR코드

DOI QR Code

Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

  • Received : 2012.06.29
  • Accepted : 2012.07.24
  • Published : 2012.10.20

Abstract

Ba-ferrite ($BaFe_{12}O_{19}$) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at $0^{\circ}C$ showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above $580^{\circ}C$, whereas what was prepared at $50^{\circ}C$ showed the crystallinity when it was calcined at the temperature higher than about $700^{\circ}C$. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at $0^{\circ}C$ and calcined at $650^{\circ}C$. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.

Keywords

Ba-Ferrite;Magnetic materials;Precipitation;Mossbauer spectroscopy;Magnetic properties

References

  1. Went, J. J.; Gorter, E. W.; van Oosterhout, G. W. Philps Tech. Rev. 1951/1952, 13, 194.
  2. Sharrock, M.; Carson, L. W. IEEE Trans. Magn. 1995, 31, 2871. https://doi.org/10.1109/20.490177
  3. Haneda, K.; Miyakama, C.; Kojima, H. J. Am. Ceram. Soc. 1974, 57, 354. https://doi.org/10.1111/j.1151-2916.1974.tb10921.x
  4. Roos, W. J. Am. Ceram. Soc. 1980, 32, 1027.
  5. Jacobo, S. E.; Civale, L.; Blesa, M. A.; J. Magn. Magn. Mater. 2003, 260, 37. https://doi.org/10.1016/S0304-8853(01)00924-6
  6. Hsiang, H.; Yao, R.-Q. Mater. Chem. Phys. 2007, 104, 1. https://doi.org/10.1016/j.matchemphys.2007.02.030
  7. Janasi, S. R.; Emura, M.; Landgraf, F. J. G.; Rodrigues, D. J. Magn. Magn. Mater. 2002, 238, 168. https://doi.org/10.1016/S0304-8853(01)00857-5
  8. Shirk, B. T.; Buessen, W. R. J. Am. Ceram. Soc. 1970, 53, 192. https://doi.org/10.1111/j.1151-2916.1970.tb12069.x
  9. Lee, C.-K.; Speyer, R. F. J. Mater. Sci. 1994, 29, 1348. https://doi.org/10.1007/BF00975087
  10. Rezlescu, L.; Rezlescu, E.; Popa, P. D.; Rezlescu, N.; J. Magn. Magn. Mater. 1999, 193, 288. https://doi.org/10.1016/S0304-8853(98)00442-9
  11. Sürig, C.; Hempel, K. A.; Bonnenberg, D. Appl. Phys. Lett. 1993, 63, 2836. https://doi.org/10.1063/1.110303
  12. Zhong, W.; Ding, W.; Zhang, N.; Hong, J.; Yan, Q.; Du, Y. J. Magn. Magn. Mater. 1997, 168, 196. https://doi.org/10.1016/S0304-8853(96)00664-6
  13. Xiong, G.; Wei, G. B.; Yang, X. J.; Lu, L. D.; Wang, X. J. Mater. Sci. 2000, 35, 931. https://doi.org/10.1023/A:1004706709876
  14. Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C.; Ding, J. J. Magn. Magn. Mater. 1998, 184, 344 https://doi.org/10.1016/S0304-8853(97)01141-4
  15. Sankaranarayanan, V. K.; Pankhurst, Q. A.; Dickson, D. P. E.; Johnson, C. E. J. Magn. Magn. Mater. 1993, 120, 73. https://doi.org/10.1016/0304-8853(93)91290-N
  16. Sankaranarayanan, V. K.; Khan, D. C. J. Magn. Magn. Mater. 1996, 153, 337. https://doi.org/10.1016/0304-8853(95)00537-4
  17. Kumazawa, H.; Cho, H.-M.; Sada, E. J. Mater. Sci. 1993, 28, 5247. https://doi.org/10.1007/BF00570072
  18. Liu, X.; Wang, J.; Gan, L.-M.; Ng, S.-C. J. Magn. Magn. Mater. 1999, 195, 452. https://doi.org/10.1016/S0304-8853(99)00123-7
  19. Mishra, D.; Anand, S.; Panda, R. K.; Das, R. P. Mater. Chem. Phys. 2004, 86, 132. https://doi.org/10.1016/j.matchemphys.2004.02.017
  20. Fang, H. C.; Yang, Z.; Ong, C. K.; Li, Y.; Wang, C. S. J. Magn. Magn. Mater. 1998, 187, 129. https://doi.org/10.1016/S0304-8853(98)00139-5
  21. Kim, Y. I.; Kim, D.; Lee, C. S. Physica B 2003, 337, 42. https://doi.org/10.1016/S0921-4526(03)00322-3
  22. Cornell, R. M.; Schwertmann, U. The Iron Oxides; VCH: New York, 1996; p. 314.
  23. Shin, H. S.; Kwon, S.-J. Proc. of 6th International Conference on Ferrite; 1992, 1402.
  24. JCPDS File No. 84-0757 and 78-0133.
  25. Adelsköld, V. Arkiv Kemi. Mineral. Geol. 1938, 12A, 1.

Cited by

  1. Controlled synthesis and photocatalytic activities of barium hexaferrite nanoparticles and examine decolorization methyl orange on liver of rats vol.28, pp.6, 2017, https://doi.org/10.1007/s10854-016-6089-6
  2. Synthesis of Co-Zr doped nanocrystalline strontium hexaferrites by sol-gel auto-combustion route using sucrose as fuel and study of their structural, magnetic and electrical properties vol.42, pp.13, 2016, https://doi.org/10.1016/j.ceramint.2016.06.053
  3. In Situ Synthesis and Characterization of CuFe10Al2O19/MWCNT Nanocomposites for Supercapacitor and Microwave-Absorbing Applications vol.52, pp.28, 2013, https://doi.org/10.1021/ie4005783
  4. Effect of Cu-Co-Zr Doping on the Properties of Strontium Hexaferrites Synthesized by Sol-Gel Auto-combustion Method vol.30, pp.3, 2017, https://doi.org/10.1007/s10948-016-3835-1
  5. A low-cost and eco-friendly viable approach for green synthesis of barium haxaferrite nanostructures using palm oil vol.40, pp.10, 2014, https://doi.org/10.1016/j.ceramint.2014.07.091
  6. Barium hexaferrite/graphene oxide: controlled synthesis and characterization and investigation of its magnetic properties vol.122, pp.8, 2016, https://doi.org/10.1007/s00339-016-0283-5
  7. Fabrication of mesoporous iron (Fe) doped copper sulfide (CuS) nanocomposite in the presence of a cationic surfactant via mild hydrothermal method for supercapacitors vol.5, pp.2, 2018, https://doi.org/10.1088/2053-1591/aaad55

Acknowledgement

Supported by : Ministry of Education