Protein Profile in Corpus Luteum during Pregnancy in Korean Native Cows

  • Chung, H.J. (Animal Biotechnology Division, Rural Development Administration) ;
  • Kim, K.W. (Animal Biotechnology Division, Rural Development Administration) ;
  • Han, D.W. (Animal Biotechnology Division, Rural Development Administration) ;
  • Lee, H.C. (Animal Biotechnology Division, Rural Development Administration) ;
  • Yang, B.C. (Animal Biotechnology Division, Rural Development Administration) ;
  • Chung, H.K. (Animal Biotechnology Division, Rural Development Administration) ;
  • Shim, M.R. (Animal Biotechnology Division, Rural Development Administration) ;
  • Choi, M.S. (Animal Biotechnology Division, Rural Development Administration) ;
  • Jo, E.B. (Animal Biotechnology Division, Rural Development Administration) ;
  • Jo, Y.M. (Animal Biotechnology Division, Rural Development Administration) ;
  • Oh, M.Y. (Animal Biotechnology Division, Rural Development Administration) ;
  • Jo, S.J. (Animal Biotechnology Division, Rural Development Administration) ;
  • Hong, S.K. (National Institute of Animal Science, Rural Development Administration) ;
  • Park, J.K. (Animal Biotechnology Division, Rural Development Administration) ;
  • Chang, W.K. (Animal Biotechnology Division, Rural Development Administration)
  • Received : 2012.05.28
  • Accepted : 2012.08.12
  • Published : 2012.11.01


Steroidogenesis requires coordination of the anabolic and catabolic pathways of lipid metabolism, but the profile of proteins associated with progesterone synthesis in cyclic and pregnant corpus luteum (CL) is not well-known in cattle. In Experiment 1, plasma progesterone level was monitored in cyclic cows (n = 5) and pregnant cows (n = 6; until d-90). A significant decline in the plasma progesterone level occurred at d-19 of cyclic cows. Progesterone level in abbatoir-derived luteal tissues was also determined at d 1 to 5, 6 to 13 and 14 to 20 of cyclic cows, and d-60 and -90 of pregnant cows (n = 5 each). Progesterone level in d-60 CL was not different from those in d 6 to 13 CL and d-90 CL, although the difference between d 6 to 13 and d-90 was significant. In Experiment 2, protein expression pattern in CL at d-90 (n = 4) was compared with that in CL of cyclic cows at d 6 to 13 (n = 5). Significant changes in the level of protein expression were detected in 32 protein spots by two-dimensional polyacrylamide gel electrophoresis (2-DE), and 23 of them were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Six proteins were found only in pregnant CL, while the other 17 proteins were found only in cyclic CL. Among the above 6 proteins, vimentin which is involved in the regulation of post-implantation development was included. Thus, the protein expression pattern in CL was disorientated from cyclic luteal phase to mid pregnancy, and alterations in specific CL protein expression may contribute to the maintenance of pregnancy in Korean native cows.


Supported by : Rural Development Administration (RDA)


  1. Axelson, M., G. Schumacher, J. Sjovall, B. Gustafsson and J. O. Lindell. 1975. Identification and quantitative determination of steroids in bovine corpus luteum during oestrous cycle and pregnancy. Acta Endocrinol (Copenh) 80:149-164.
  2. Bersinger, N. A., M. H. Birkhauser, M. Yared and D. M. Wunder. 2009. Serum glycodelin pattern during the menstrual cycle in healthy young women. Acta. Obstet. Gynecol. Scand. 88: 1215-1221.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
  4. Chagas, E. S. J. and da C. L. Lopes. 2005. Luteotrophic influence of early bovine embryos and the relationship between plasma progesterone concentrations and embryo survival. Theriogenology 64:49-60.
  5. Couet, J., C. Martel, E. Dupont, V. Luu-The, M. A. Sirard, H. F. Zhao, G. Pelletier and F. Labrie. 1990. Changes in 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4 isomerase messenger ribonucleic acid, activity and protein levels during the estrous cycle in the bovine ovary. Endocrinology 127:2141-2148.
  6. Diskin, M. G. and D. G. Morris. 2008. Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43(Suppl 2):260-267.
  7. Dohmen, R. J. 2000. SUMO protein modification. Biochim. Biophys. Acta. 1695:113-131.
  8. Groten, T., H. M. Fraser, W. C. Duncan, R. Konrad, R. Kreienberg and C. Wulff. 2006. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum. Reprod. 21:3096-3102.
  9. Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.
  10. Ireland, J. J., R. L. Murphee and P. B. Coulson. 1980. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63:155-160.
  11. Knickerbocker, J. J., W. W. Thatcher, F. W. Bazer, M. Drost, D. H. Barron, K. B. Fincher and R. M. Roberts. 1986. Proteins secreted by day-16 to -18 bovine conceptuses extend corpus luteum function in cows. J. Reprod. Fertil. 77:381-391.
  12. Li, X. M., A. V. Juorio and B. D. Murphy. 1993. Prostaglandins alter the abundance of messenger ribonucleic acid for steroidogenic enzymes in cultured porcine granulosa cells. Biol. Reprod. 48:1360-1366.
  13. McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049-6055.
  14. Melchior, F. 2000. SUMO-nonclassical ubiquitin. Annu. Rev. Cell Dev. Biol. 16:591-626.
  15. Nacerddine, K., F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-Tannoudji, C. Babinet, P. P. Pandolfi and A. Dejean. 2005. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9:769-779.
  16. Oakley, B. R., D. R. Kirsch and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105:361-363.
  17. O'Malley, B. W. and W. L. McGuire. 1968. Studies on the mechanism of action of progesterone in regulation of the synthesis of specific protein. J. Clin. Invest. 47:654-664.
  18. Osnes, T., O. Sandstad, V. Skar, M. Osnes and P. Kierulf. 1993. Total protein in common duct bile measured by acetonitrile precipitation and a micro bicinchoninic acid (BCA) method. Scand. J. Clin. Lab. Invest. 53:757-763.
  19. Perez-Martinez, C., R. A. Garcia-Fernandez, A. Escudero, M. C. Ferreras and M. J. Garcia-Iglesias. 2001. Expression of cytokeratins and vimentin in normal and neoplastic tissue from the bovine female reproductive tract. J. Comp. Pathol. 124:70-78.
  20. Pfander, B., G. L. Moldovan, M. Sacher, C. Hoege and S. Jentsch. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428-433.
  21. Rajan, S., L. D. Plant, M. L. Rabin, M. H. Butler and S. A. Goldstein. 2005. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121:37-47.
  22. Rekawiecki, R., M. K. Kowalik, D. Slonina and J. Kotwica. 2008. Regulation of progesterone synthesis and action in bovine corpus luteum. J. Physiol. Pharmacol. 59(Suppl 9):75-89.
  23. Rizos, D., F. Carter, U. Besenfelder, V. Havlicek and P. Lonergan. 2010. Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci. 93: 1022-1029.
  24. Rodgers, R. J., M. R. Waterman and E. R. Simpson. 1986. Cytochromes P-450scc, P-450(17)alpha, adrenodoxin, and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase in bovine follicles and corpora lutea. Changes in specific contents during the ovarian cycle. Endocrinology 118:1366-1374.
  25. Rodgers, R. J., M. R. Waterman and E. R. Simpson. 1987. Levels of messenger ribonucleic acid encoding cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor in bovine follicles and corpora lutea throughout the ovarian cycle. Mol. Endocrinol. 1:274-279.
  26. Ross, S., J. L. Best, L. I. Zon and G. Gill. 2002. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10:831-842.
  27. Sapetschnig, A., G. Rischitor, H. Braun, A. Doll, M. Schergaut, F. Melchior and G. Suske. 2002. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO. J. 21:5206-5215.
  28. Schwartz, D. C. and M. Hochstrasser. 2003. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 28:321-328.
  29. Stade, K., F. Vogel, I. Schwienhorst, B. Meusser, C. Volkwein, B. Nentwig, R. J. Dohmen and T. Sommer. 2002. A lack of SUMO conjugation affects cNLS-dependent nuclear protein import in yeast. J. Biol. Chem. 277:49554-49561.
  30. Willcox, D. L. 1986. Progesterone-binding protein in the corpus luteum, blood and lymph of sheep. Biochim. Biophys. Acta. 881:470-479.

Cited by

  1. Challenges and opportunities of bovine milk analysis by mass spectrometry vol.13, pp.1, 2016,
  2. Epidemiologic and economic analyses of pregnancy loss attributable to mastitis in primiparous Holstein cows vol.101, pp.11, 2018,