DOI QR코드

DOI QR Code

Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake

  • Karlsson, Linda ;
  • Ruiz-Moreno, M. ;
  • Stern, M.D. ;
  • Martinsson, K.
  • Received : 2012.04.22
  • Accepted : 2012.06.01
  • Published : 2012.11.01

Abstract

The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or $130^{\circ}C$, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The $130^{\circ}C$ treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The $130^{\circ}C$ treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at $130^{\circ}C$ did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants.

Keywords

Cannabis sativa;Heat Treatment;Amino Acids;Ruminal Degradability;Intestinal Digestibility

References

  1. AOAC. 1984. Official methods of analysis. 14th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
  2. Callaway, J. C. 2004. Hempseed as a nutritional resource: an overview. Euphytica 140:65-72. https://doi.org/10.1007/s10681-004-4811-6
  3. Calsamiglia, S. and M. D. Stern. 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim Sci. 73:1459-1465.
  4. Dakowski, P., M. R. Weisbjerg and T. Hvelplund. 1996. The effect of temperature during processing of rape seed meal on amino acid degradation in the rumen and digestion in the intestine. Anim. Feed Sci. Technol. 58:213-226. https://doi.org/10.1016/0377-8401(95)00868-3
  5. Gargallo, S., S. Calsamiglia and A. Ferret. 2006. Technical note: A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim Sci. 84:2163-2167. https://doi.org/10.2527/jas.2004-704
  6. Gibb, D. J., M. A. Shah, P. S. Mir and T. A. McAllister. 2005. Effect of full-fat hemp seed on performance and tissue fatty acids of feedlot cattle. Can. J. Anim. Sci. 85:223-230. https://doi.org/10.4141/A04-078
  7. Goering, H. K., C. H. Gordon, R. W. Hemken, D. R. Waldo, P. J. Van Soest and L. W. Smith. 1972. Analytical estimates of nitrogen digestibility in heat damaged forages. J. Dairy Sci. 55:1275-1280. https://doi.org/10.3168/jds.S0022-0302(72)85661-3
  8. Harstad, O. M. and E. Prestløkken. 2001. Rumen degradability and intestinal indigestibility of individual amino acids in corn gluten meal, canola meal and fish meal determined in situ. Anim. Feed Sci. Technol. 94:127-135. https://doi.org/10.1016/S0377-8401(01)00304-2
  9. Hessle, A., M. Eriksson, E. Nadeau, T. Turner and B. Johansson. 2008. Cold-pressed hempseed cake as a protein feed for growing cattle. Acta Agric. Scand., Sect. A - Anim. Sci. 58:136 -145. https://doi.org/10.1080/09064700802452192
  10. Huhtanen, P. and A. N. Hristov. 2009. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 92:3222-3232. https://doi.org/10.3168/jds.2008-1352
  11. Jones, R. A., A. F. Mustafa, D. A. Christensen and J. J. McKinnon. 2001. Effects of untreated and heat-treated canola presscake on milk yield and composition of dairy cows. Anim. Feed Sci. Technol. 89:97-111. https://doi.org/10.1016/S0377-8401(00)00219-4
  12. Karlsson, L., M. Finell and K. Martinsson. 2010. Effects of increasing amounts of hempseed cake in the diet of dairy cows on the production and composition of milk. Animal 4:1854-1860. https://doi.org/10.1017/S1751731110001254
  13. Karlsson, L., M. Hetta, P. Uden and K. Martinsson. 2009. New methodology for estimating rumen protein degradation using the in vitro gas production technique. Anim. Feed Sci. Technol. 153:193-202. https://doi.org/10.1016/j.anifeedsci.2009.06.010
  14. Karlsson, L. and K. Martinsson. 2011. Growth performance of lambs fed different protein supplements in barley-based diets. Livest. Sci. 138:125-131. https://doi.org/10.1016/j.livsci.2010.12.010
  15. Littell, R. C., G. A. Milliken, W. W. Stroup, R. D. Wolfinger and O. Schabenberger. 2006. SAS system for mixed models, 2nd ed. SAS Institute Inc., Cary, NC, USA.
  16. Lund, P., M. R. Weisbjerg and T. Hvelplund. 2008. Profile of digested feed amino acids from untreated and expander treated feeds estimated using in situ methods in dairy cows. Livest. Sci. 114:62-74. https://doi.org/10.1016/j.livsci.2007.04.012
  17. McKinnon, J. J., J. A. Olubobokun, A. Mustafa, R. D. H. Cohen and D. A. Christensen. 1995. Influence of dry heat treatment of canola meal on site and extent of nutrient disappearance in ruminants. Anim. Feed Sci. Technol. 56:243-252. https://doi.org/10.1016/0377-8401(95)00828-4
  18. Mustafa, A. F., Y. P. Chouinard, D. R. Ouellet and H. Soita. 2003. Effects of moist heat treatment on ruminal nutrient degradability of sunflower seed. J. Sci. Food Agric. 83:1059-1064. https://doi.org/10.1002/jsfa.1508
  19. Mustafa, A. F., J. J. McKinnon and D. A. Christensen. 1999a. Effect of moist heat treatment on in-vitro degradability and ruminal escape protein and amino acids of mustard meal. Anim. Feed Sci. Technol. 76:265-274. https://doi.org/10.1016/S0377-8401(98)00223-5
  20. Mustafa, A. F., J. J. McKinnon and D. A. Christensen. 1999b. The nutritive value of hemp meal for ruminants. Can. J. Anim. Sci. 79:91-95. https://doi.org/10.4141/A98-031
  21. NRC. 2001. Nutrient requirements of dairy cattle. 7th rev. ed. ed. National Academy Press, Washington, DC, USA.
  22. Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. Camb. 92:499-503. https://doi.org/10.1017/S0021859600063048
  23. Santos, F. A. P., J. E. P. Santos, C. B. Theurer and J. T. Huber. 1998. Effects of rumen-undegradable protein on dairy cow performance: A 12-year literature review. J. Dairy Sci. 81:3182-3213. https://doi.org/10.3168/jds.S0022-0302(98)75884-9
  24. Schwab, C. G., P. Huhtanen, C. W. Hunt and T. Hvelplund. 2005. Nitrogen requirements of cattle. In Nitrogen and phosphorous nutrition of cattle: reducing the environmental impact of cattle operations (Ed. E. Pfeffer and A. Hristov) pp. 13-70. CABI Publishing, Wallingford, UK.
  25. Shimelis, E. A. and S. Rakshit. 2005. Effect of microwave heating on solubility and digestibility of proteins and reduction of antinutrients of selected common bean (Phaseolus vulgaris L.) varieties grown in ethiopia. Ital. J. Food Sci. 17:407-418.
  26. Sniffen, C. J., J. D. O'Connor, P. J. Van Soest, D. G. Fox and J. B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70:3562-3577.
  27. Solanas, E. M., C. Castrillo, M. Jover and A. De Vega. 2008. Effect of extrusion on in situ ruminal protein degradability and in vitro digestibility of undegraded protein from different feedstuffs. J. Sci. Food Agric. 88:2589-2597. https://doi.org/10.1002/jsfa.3345
  28. Turner, T., A. Hessle, K. Lundstrom and J. Pickova. 2008. Influence of hempseed cake and soybean meal on lipid fractions in bovine M. longissimus dorsi. Acta Agric. Scand. Sect. A, Anim. Sci. 58:152-160. https://doi.org/10.1080/09064700802492354
  29. Wallace, R. J. and M. L. Falconer. 1992. In vitro studies of conditions required to protect protein from ruminal degradation by heating in the presence of sugars. Anim. Feed Sci. Technol. 37:129-141. https://doi.org/10.1016/0377-8401(92)90125-P
  30. Van der Poel, A. F. B., E. Prestløkken and J. O. Goelema. 2005. Feed processing: effects on nutrient degradation and digestibility. In Quantitative aspects of ruminant digestion and metabolism. 2nd ed. (Ed. J. Dijkstra, J. M. Forbes and J. France) pp. 627-661. CABI Publishing, Wallingford, UK.
  31. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd ed. Cornell University Press, Ithaca, NY, USA.
  32. Wang, X.-S., C.-H. Tang, X.-Q. Yang and W.-R. Gao. 2008. Characterization, amino acid composition and in vitro digestibility of hemp (Cannabis sativa L.) proteins. Food Chem. 107:11-18. https://doi.org/10.1016/j.foodchem.2007.06.064
  33. Vanhatalo, A., P. Huhtanen, V. Toivonen and T. Varvikko. 1999. Response of dairy cows fed grass silage diets to abomasal infusions of histidine alone or in combinations with methionine and lysine. J. Dairy Sci. 82:2674-2685. https://doi.org/10.3168/jds.S0022-0302(99)75524-4
  34. Weisbjerg, M. R., T. Hvelplund, S. Hellberg, S. Olsson and S. Sanne. 1996. Effective rumen degradability and intestinal digestibility of individual amino acids in different concentrates determined in situ. Anim. Feed Sci. Technol. 62:179-188. https://doi.org/10.1016/S0377-8401(96)00970-4

Cited by

  1. Effects of Heat Processing Techniques on Nutritional Value and in vitro Rumen Fermentation Characteristics of Jack bean (Canavalia ensiformis L.) vol.17, pp.6, 2018, https://doi.org/10.3923/pjn.2018.294.299