Effects of Adding Essential Oil to the Diet of Weaned Pigs on Performance, Nutrient Utilization, Immune Response and Intestinal Health

  • Li, Pengfei ;
  • Piao, Xiangshu ;
  • Ru, Yingjun ;
  • Han, Xu ;
  • Xue, Lingfeng ;
  • Zhang, Hongyu
  • Received : 2012.05.28
  • Accepted : 2012.07.15
  • Published : 2012.11.01


The objective of this study was to evaluate the effects of adding essential oils to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. A total of 96 weaning pigs ($8.37{\pm}1.58$ kg) were allotted to one of three dietary treatments. The treatments consisted of an unsupplemented basal diet (negative control, NC) or similar diets supplemented with 0.01% of an essential oil product which contained 18% thymol and cinnamaldehyde (EOD) as well as a diet supplemented with 0.19% of an antibiotic mixture which provided 150 ppm chlortetracycline, 80 ppm colistin sulfate and 50 ppm kitasamycin (positive control, PC). Each treatment was provided to eight pens of pigs with four pigs per pen. Over the entire 35 d experiment, ADG and fecal score were improved (p<0.05) for pigs fed the PC and EOD compared with the NC. Dry matter and crude protein digestibility as well as lymphocyte proliferation for pigs fed the PC and EOD diets were increased significantly compared with NC (p<0.05). IGF-I levels in plasma were significantly increased (p<0.05) in pigs fed the PC diet compared with pigs fed the NC diet. Interleukin-6 concentration was lower (p<0.05) and the tumor necrosis factor-${\alpha}$ level was higher (p<0.05) in the plasma of pigs fed the EOD diet than the NC diet. Plasma total antioxidant capacity level increased (p<0.05) in pigs fed the EOD diet compared with pigs fed the NC. Villus height to crypt depth ratio in the jejunum was greater (p<0.05) in pigs fed the PC and EOD diets than the NC. The numbers of E. coli in the cecum, colon and rectum were reduced (p<0.05) in pigs fed the PC and EOD diets compared with the control. In the colon, the ratio of Lactobacilli to E. coli was increased (p<0.05) in pigs fed the EOD diet compared with NC diet. Total aerobe numbers in the rectum were decreased (p<0.05) in pigs fed the PC and EOD diets compared with the control. Collectively, these results indicate that blends of essential oils could be a candidate for use as an alternative to traditional antibiotics in weaning pig diets.


Essential Oil;Weaned Pig;Performance;Immunity;Microflora;Morphology


  1. Amerah, A. M., A. Peron, F. Zaefarian and V. Ravindran. 2011. Influence of whole wheat inclusion and a blend of essential oils on the performance, nutrient utilisation, digestive tract development and ileal microbiota profile of broiler chickens. Br. Poult. Sci. 52:124-132.
  2. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, A., VA, USA.
  3. Boudry, G., V. Peron, I. Le Huerou-Luron, J. P. Lalles and B. Seve. 2004. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr. 134:2256-2562.
  4. Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods. A review. Int. J. Food. Microbiol. 94:223-253.
  5. Castillo, M., S. M. Martin-Orue, M. Roca, E. G. Manzanilla, I. Badiola, J. F. Perez and J. Gasa. 2006. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci. 84:2725-2734.
  6. Cho, J. H., Y. J. Chen, B. J. Min, H. J. Kim, O. S. Kwon, K. S. Shon, I. H. Kim, S. J. Kim and A. Asamer. 2006. Effects of essential oils supplementation on growth performance, IgG concentration and fecal noxious gas concentration of weaned pigs. Asian-Aust. J. Anim. Sci. 19:80-85.
  7. Cromwell, G. L. 2002. Why and how antibiotics are used in swine production. Anim. Biotechnol. 13:7-27.
  8. Deng, Z. Y., J. W. Zhang, G. Y. Wu, Y. L. Yin, Z. Ruan, T. J. Li, W. Y. Chu, X. F. Kong, Y. M. Zhang, Y. W. Fan, R. Liu and R. L. Huang. 2007a. Dietary supplementation with polysaccharides from Semen cassiae enhances immunoglobulin production and interleukin gene expression in early-weaned piglets. J. Sci. Food Agric. 87:1868-1873.
  9. Deng, Z. Y., J. W. Zhang, J. Li, Y. W. Fan, S. W. Cao, R. L. Huang, Y. L. Yin, H. Y. Zhong and T. J. Li. 2007b. Effect of polysaccharides of cassiae seeds on the intestinal microflora of piglets. Asia. Pac. J. Clin. Nutr. 16(Suppl 1):143-147.
  10. Fairbrother, J. M., E. Nadeau and C. L. Gyles. 2005. Escherichia coli in post weaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 6:17-39.
  11. Franca, C. S., F. S. Menezes, L. C. Costa, E. S. Niculau, P. B. Alves, J. E. Pinto and R. M. Marcal. 2008. Analgesic and antidiarrheal properties of ocimum selloi essential oil in mice. Fitoterapia 79:569-573.
  12. Grassmann, J., D. Schneider, D. Weiser and E. F. Elstner. 2001. Antioxidative effects of lemon oil and its components on copper induced oxidation of low density lipoprotein. Arzneimittel-Forschung 51:799-805.
  13. Hao, Y., X. S. Piao and X. L. Piao. 2012. Saikosaponin-d inhibits $\beta$-conglycinin induced activation of rat basophilic leukemia-2H3 cells. Int. Immunopharmacol. 13:257-263.
  14. Janczyk, P., R. Pieper, V. Urubschurov, K. R. Wendler and W. B. Souffrant. 2009. Investigations on the effects of dietary essential oils and different husbandry conditions on the gut ecology in piglets after weaning. Int. J. Microbiol. 2009:1-9.
  15. Johnson, R. W. 1997. Inhibition of growth by pro-inflammatory cytokines: An integrated view. J. Anim. Sci. 75:1244-1255.
  16. Jugl-Chizzola, M., E. Ungerhofer, C. Gabler, W. Hagmuller, R. Chizzola, K. Zitterl-Eglseer and C. Franz. 2006. Testing of the palatability of thymus vulgaris l and origanum vulgare l as flavouring feed additive for weaner pigs on the basis of a choice experiment. Berl. Munch. Tierarztl. Wochenschr. 119: 238-243.
  17. Ketelslegers, J. M., D. Maiter, M. Maes, L. E. Underwood and J. P. Thissen. 1995. Nutritional regulation of insulin-like growth factor-1. Metabolism 44:50-57.
  18. Kong, X. F., G. Y. Wu, Y. L. Yin, H. J. Liu, F. G. Yin, T. J. Li, R. L. Huang, P. Kang, F. Xing, M. Z. Fan, C. B. Yang and Q. H. He. 2007a. Dietary supplementation with Chinese herbal ultra-fine 3 powder enhances cellular and humoral immunity in early weaned piglets. Livest. Sci. 108:94-98.
  19. Kong, X. F., Y. L. Yin, G. Y. Wu, Y. Q. Hou, H. J. Liu, F. G. Yin, T. J. Li, R. L. Huang, Z. Ruan, H. Xiong, Z. Y. Deng, M. Y. Xie, Y. Y. Liao, L. X. Chen and S. W. Kim. 2007b. Dietary supplementation with acanthopanax senticosus extract modulates cellular and humoral immunities in weaned piglets. Asian-Aust. J. Anim. Sci. 20:1453-1461.
  20. Kroismayr, A., K. Schedle, J. Sehm, M. W. Pfaffl, C. Plitzner, H. Foissy, T. Ettle, H. Mayer, M. Schreiner and W. Windisch. 2008a. Effects of antimicrobial feed additives on gut microbiology and blood parameters of weaned piglets. Bodenkultur 59:111-120.
  21. Kroismayr, A., J. Sehm, M. W. Pfaffl, K. Schedle, C. Plitzner and W. Windisch. 2008b. Effects of avilamycin and essential oils on mRNA expression of apoptotic and inflammatory markers and gut morphology of piglets. Czech J. Anim. Sci. 53:377-387.
  22. Li, J., D. F. Li, J. J. Xing, Z. B. Cheng and C. H. Lai. 2006. Effects of beta-glucan extracted from saccharomyces cerevisiae on growth performance, and immunological and somatotropic responses of pigs challenged with escherichia coli lipopolysaccharide. J. Anim. Sci. 84:2374-2381.
  23. Lien, T. F., Y. M. Horng and C. P. Wu. 2007. Feasibility of replacing antibiotic feed promoters with the Chinese traditional herbal medicine Bazhen in weaned piglets. Livest. Sci. 107:97-102.
  24. Liu, P., X. S. Piao, P. A. Thacker, Z. K. Zeng, P. F. Li, D. Wang and S. W. Kim. 2010. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with escherichia coli k88. J. Anim. Sci. 88:3871-3879.
  25. Liu, Y., L. Gong, D. Li, Z. Feng, L. Zhao and T. Dong. 2003. Effects of fish oil on lymphocyte proliferation, cytokine production and intracellular signaling in weanling pigs. Arch. Anim. Nutr. 57:151-165.
  26. Manzanilla, E. G., M. Nofrarias, M. Anguita, M. Castillo, J. F. Perez, S. M. Martin-Orue, C. Kamel and J. Gasa. 2006. Effects of butyrate, avilamycin, and a plant extract combination on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 84: 2743-2751.
  27. Manzanilla, E. G., J. F. Perez, M. Martin, J. C. Blandon, F. Baucells, C. Kamel and J. Gasa. 2009. Dietary protein modifies effect of plant extracts in the intestinal ecosystem of the pig at weaning. J. Anim. Sci. 87:2029-2037.
  28. Manzanilla, E. G., J. F. Perez, M. Martin, C. Kamel, F. Baucells and J. Gasa. 2004. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci. 82:3210-3218.
  29. Mao, X. F., X. S. Piao, C. H. Lai, D. F. Li, J. J. Xing and B. L. Shi. 2005. Effects of beta-glucan obtained from the Chinese herb Astragalus membranaceus and lipopolysaccharide challenge on performance, immunological, adrenal, and somatotropic responses of weanling pigs. J. Anim. Sci. 83:2775-2782.
  30. Miller, E. L. 1967. Determination of the tryptophan content of feedingstuffs with particular reference to cereals. J. Sci. Food Agric. 18:381-386.
  31. Namkung, H., M. Li, J. Gong, H. Yu, M. Cottrill and C. F. M. de Lange. 2004. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs Can. J. Anim. Sci. 84: 697-704.
  32. Nofrarias, M., E. G. Manzanilla, J. Pujols, X. Gibert, N. Majo, J. Segales and J. Gasa. 2006. Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leukocyte cell subsets of weaned pigs. J. Anim. Sci. 84:2735-2742.
  33. NRC. 1998. Nutrient requirements of swine. 10th ed. Natl. Acad. Press, W., DC, USA.
  34. Osek, J. 1999. Prevalence of virulence factors of Escherichia coli strains isolated from diarrheic and healthy piglets after weaning. Vet. Microbiol 68:209-217.
  35. Owens, P. C., K. L. Gatford, P. E. Walton, W. Morley and R. G. Campbell. 1999. The relationship between endogenous insulin-like growth factors and growth in pigs. J. Anim. Sci. 77:2098-2103.
  36. Pie, S., J. P. Lalles, F. Blazy, J. Laffitte, B. Seve and I. P. Oswald. 2004. Weaning is associated with an up-regulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 134:641-647.
  37. Pluske, J. R., D. J. Hampson and I. H. Williams. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci. 51:215-236.
  38. Schone, F., A. Vetter, H. Hartung, H. Bergmann, A. Biertumpfel, G. Richter, S. Muller and G. Breitschuh. 2006. Effects of essential oils from fennel (foeniculi aetheroleum) and caraway (carvi aetheroleum) in pigs. J. Anim. Physiol. Anim. Nutr. (Berl.) 90: 500-510.
  39. Shen, Y. B., X. S. Piao, S. W. Kim, L. Wang, P. Liu, I. Yoon and Y. G. Zhen. 2009. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 87:2614-2624.
  40. Spreeuwenberg, M. A., J. M. Verdonk, H. R. Gaskins and M. W. Verstegen. 2001. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. J. Nutr. 131:1520-1527.
  41. Spurlock, M. E. 1997. Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J. Anim. Sci. 75:1773-1783.
  42. van den Bogaard, A. E. and E. E. Stobberingh. 1999. Antibiotic usage in animals: Impact on bacterial resistance and public health. Drugs 58:589-607.
  43. Wang, Y. Z., C. L. Xu, Z. H. An, J. X. Liu and J. Feng. 2008. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Technol. 140: 326-336.
  44. Wei, A. and T. Shibamoto. 2007. Antioxidant activities and volatile constituents of various essential oils. J. Agric. Food Chem. 55: 1737-1742.
  45. Wang, D., X. S. Piao, Z. K. Zeng, T. Lu, Q. Zhang, P. F. Li, L. F. Xue and S. W. Kim. 2011. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of crude protein. Asian-Aust. J. Anim. Sci. 24:1718-1728.
  46. Williams, C. H., D. J. David and O. Lismaa. 1962. The determination of chromic oxide in faeces sample by atomic absorption spectrophotometry. J. Agric. Sci. 59:381-385.
  47. Windisch, W., K. Schedle, C. Plitzner and A. Kroismayr. 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86:E140-E148.
  48. Yan, L., J. P. Wang, H. J. Kim, Q. W. Meng, X. Ao, S. M. Hong and I. H. Kim. 2010. Influence of essential oil supplementation and diets with different nutrient densities on growth performance, nutrient digestibility, blood characteristics, meat quality and faecal noxious gas content in grower-finisher pigs. Livest. Sci. 128:115-122.
  49. Yin, Y. L., Z. R. Tang, Z. H. Sun, Z. Q. Liu, T. J. Li, R. L. Huang, Z. Ruan, Z. Y. Deng, B. Gao, L. X. Chen, G. Y. Wu and S. W. Kim. 2008. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity response in early-weaned piglets. Asian-Aust. J. Anim. Sci. 21:723-731.
  50. Zitterl-Eglseer, K., W. Wetscherek, A. Stoni, A. Kroismayr and W. Windisch. 2008. Bioavailability of essential oils of a phytobiotic feed additive and impact of performance and nutrient digestibility in weaned piglets. Bodenkultur 59:121-129.

Cited by

  1. Study of the Catabolism of Thyme Phenols Combining in Vitro Fermentation and Human Intervention vol.62, pp.45, 2014,
  2. Effects of essential oil supplementation of a low-energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs vol.86, pp.3, 2014,
  3. ) as performance enhancers in growing pigs vol.86, pp.6, 2014,
  4. Assessment of Fecal Microflora Changes in Pigs Supplemented with Herbal Residue and Prebiotic vol.10, pp.7, 2015,
  5. Dietary supplementation of Digestarom® herbal formulation: effect on apparent digestibility, faecal and caecal microbial counts and live performance of growing rabbits vol.24, pp.2, 2016,
  6. A carvacrol–thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets vol.11, pp.02, 2017,
  7. Enrichment of Animal Diets with Essential Oils—A Great Perspective on Improving Animal Performance and Quality Characteristics of the Derived Products vol.4, pp.2, 2017,
  8. Raddi) essential oil on performance, small intestinal morphology and microbial counts of weanling pigs vol.98, pp.2, 2017,
  9. Phytobiotics in poultry and swine nutrition – a review pp.1828-051X, 2017,
  10. Addition of phytogenic blend in different nutrient density diets of meat-type ducks vol.46, pp.1, 2018,
  11. Thymol and Carvacrol Affect Hybrid Tilapia through the Combination of Direct Stimulation and an Intestinal Microbiota-Mediated Effect: Insights from a Germ-Free Zebrafish Model vol.146, pp.5, 2016,
  12. Effects of dietary coated-oleum cinnamomi supplementation on the immunity and intestinal integrity of broiler chickens pp.13443941, 2018,
  13. Effect of Oxidized Soybean Oils on Oxidative Status and Intestinal Barrier Function in Broiler Chickens vol.20, pp.2, 2018,
  14. Effect of supplementing milk replacer with aromatic oregano (Oreganum onites L.) water on performance, immunity and general health profiles of Holstein calves vol.58, pp.10, 2018,
  15. Innovative drugs, chemicals, and enzymes within the animal production chain vol.49, pp.1, 2018,
  16. Immunomodulatory effects of phytogenics in chickens and pigs — A review vol.31, pp.5, 2018,
  17. Effects of plant essential oil supplementation on growth performance, immune function and antioxidant activities in weaned pigs vol.17, pp.1, 2018,
  18. Alternatives to antibiotics as growth promoters for use in swine production: a review vol.4, pp.1, 2013,
  19. Effects of dietary supplementation with essential oils and organic acids on the growth performance, immune system, fecal volatile fatty acids, and microflora community in weaned piglets vol.97, pp.1, 2018,
  20. Effects of different vehiculization strategies for the allium derivative propyl propane thiosulfonate during dynamic simulation of the pig gastrointestinal tract pp.1918-1825, 2018,
  21. Determination of carcase yield, sensory and acceptance of meat from male and female pigs with dietary supplementation of oregano essential oils pp.1828-051X, 2019,