Development and spectroscopic characteristics of the high-power wave guide He Plasma

도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구

  • Received : 2012.05.13
  • Accepted : 2012.08.30
  • Published : 2012.10.25


Okamoto cavity was modified to generate high power (2.45 GHz, 2 kW) He, N2 and Ar plasmas with WR-340 waveguide. Many factors which influence to the plasma generation were optimized and investigated for the spectroscopic properties of the He plasma generated. Some of the important factors are the diameter of the inner conductor, the distance between the inner and outer conductors and the distance between the tip of the inner conductor and the torch. After optimization for the He, two torches (a commercial mini torch for ICP and a tangential flow torch made locally) were compared and showed similar results for the helium plasma gas flow of 25 L/min~30 L/min. A tall torch (extended) was used to block the air in-flow and reduced the background intensity at 340 nm region (NH band). Emission intensity was measured for determination of halogen element in the aqueous solution with power and carrier gas flow rate. Electron number density and the excitation temperature were on the order of $3.67{\times}10^{11}/cm^3$ and 4,350 K, respectively. These values are similar or a bit smaller than other microwave plasmas. It has been possible to analyze aqueous samples. The detection limit for Cl (479.45 nm) was obtained to be 116 mg/L and needs analytical optimization for the better performance.


High power microwave plasma;MIP;Okamoto cavity;Helium plasma;WR-340 waveguide


  1. C. I. M. Beenakker, B. Bosman and P. W. J. M. Boumans, Spectrochim. Acta, 33B, 373-381 (1978).
  2. K. G. Michlewicz and J. W. Carnahan, Anal. Chem., 57, 1092-1095 (1985).
  3. R. D. Deutsch and G. M. Hieftje, Appl. Spectrosc., 39, 214-222 (1985).
  4. M. Moisan, C. Beaudry and P. Leprince, IEEE transactions on Plasma Science, PS-3, 55-59 (1975).
  5. M. Moisan, R. Pantel, J. Hubert, E. Bloyet, P. Leprince, J. Marec and A. Ricard, J. Microwave Power, 14, 57-61 (1979).
  6. Q. Jin, C. Zhu, M. W. Borer and G. M. Hieftje, Spectrochim. Acta., 46B, 417-430 (1991).
  7. Q. Jin, H. Zhang, J. Anal. At. Spectrom., 9, 851-856 (1994).
  8. A. Besner and J. Hubert, Appl. Spectrosc., 52, 894-899 (1998).
  9. D. Boudreau and J. Hubert, Appl. Spectrosc., 47, 609-614 (1993).
  10. B. M. Spencer, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 48, 289-296 (1994).
  11. B. M. Spencer, A. R. Raghani, and J. D. Winefordner, Appl. Spectrosc., 48, 643-646 (1994).
  12. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank and C. Harrison, J. Anal. At. Spectrom., 26, 1258-65 (2011).
  13. K. Jankowski, A. Ramsza, E. Reszke and M. Strzelec, J. Anal. At. Spectrom., 25, 44-47 (2010).
  14. A. Tyburska and K. Jankowski, Analytical Methods, 3, 659-663 (2011).
  15. K. Jankowski, A. Jacowska, A. P. Ramsza and E. Reszke, J. Anal. At. Spectrom., 23, 1234-40 (2008).
  16. Y. Okamoto, Jpn. J. Appl. Phys., 38, L338-L341 (1999).
  17. Y. Okamoto, M. Yasuda and S. Murayama, Jpn. J. Appl. Phys., 29, 670-672 (1990).
  18. H. Yamada and Y. Okamoto, Appl. Spectrosc., 55, 114- 118 (2001).
  19. M. Ohata and N. Furuta, J. Anal. At. Spectrom., 12, 341-347 (1997).
  20. K. Ogura, H. Yamada, Y. Sato, and Y. Okamoto, Appl. Spectrosc., 51, 1496-1499 (1997).
  21. A. Matsumoto, A. Oheda and T. Nakahara, Anal. Sci., 17, 963-966. (2001).
  22. Y. Okamoto, H. Murohashi and S. Wake, Anal. Sci., 17, 967-970. (2001).
  23. Z. Zhang and K. Wagatsuma, J. Anal. At. Spectrom., 17, 699-703 (2002).
  24. T. Maeda and K. Wagatsuma, Spectrochim. Acta., 60B, 81-87 (2005).
  25. K. B. Cull and J. W. Carnahan, Appl. Spectrosc., 42, 1061-1065 (1988).
  26. Mingin Wu and J. W. Carnahan, Appl. Spectrosc., 46, 163-168 (1992).
  27. S. K. Chan, R. L. Van Hoven and A. Montaser, Anal. Chem., 58, 2342-2343 (1986).
  28. M. T. C. De Loos-Vollerbregt, J. J. Tiggelman and L. De Galan, Spectrochim. Acta., 43B, 773-781 (1988).
  29. D. J. Kalnicky, V. A. Fassel and R. N. Kniseley, Appl. Spectrosc., 31, 137-151 (1977).