DOI QR코드

DOI QR Code

Development and spectroscopic characteristics of the high-power wave guide He Plasma

도파관식 고출력 헬륨 플라즈마의 개발과 분광학적 특성 연구

  • Received : 2012.05.13
  • Accepted : 2012.08.30
  • Published : 2012.10.25

Abstract

Okamoto cavity was modified to generate high power (2.45 GHz, 2 kW) He, N2 and Ar plasmas with WR-340 waveguide. Many factors which influence to the plasma generation were optimized and investigated for the spectroscopic properties of the He plasma generated. Some of the important factors are the diameter of the inner conductor, the distance between the inner and outer conductors and the distance between the tip of the inner conductor and the torch. After optimization for the He, two torches (a commercial mini torch for ICP and a tangential flow torch made locally) were compared and showed similar results for the helium plasma gas flow of 25 L/min~30 L/min. A tall torch (extended) was used to block the air in-flow and reduced the background intensity at 340 nm region (NH band). Emission intensity was measured for determination of halogen element in the aqueous solution with power and carrier gas flow rate. Electron number density and the excitation temperature were on the order of $3.67{\times}10^{11}/cm^3$ and 4,350 K, respectively. These values are similar or a bit smaller than other microwave plasmas. It has been possible to analyze aqueous samples. The detection limit for Cl (479.45 nm) was obtained to be 116 mg/L and needs analytical optimization for the better performance.

Keywords

High power microwave plasma;MIP;Okamoto cavity;Helium plasma;WR-340 waveguide

References

  1. C. I. M. Beenakker, B. Bosman and P. W. J. M. Boumans, Spectrochim. Acta, 33B, 373-381 (1978).
  2. K. G. Michlewicz and J. W. Carnahan, Anal. Chem., 57, 1092-1095 (1985). https://doi.org/10.1021/ac00283a029
  3. R. D. Deutsch and G. M. Hieftje, Appl. Spectrosc., 39, 214-222 (1985). https://doi.org/10.1366/0003702854248935
  4. M. Moisan, C. Beaudry and P. Leprince, IEEE transactions on Plasma Science, PS-3, 55-59 (1975).
  5. M. Moisan, R. Pantel, J. Hubert, E. Bloyet, P. Leprince, J. Marec and A. Ricard, J. Microwave Power, 14, 57-61 (1979). https://doi.org/10.1080/16070658.1979.11689129
  6. Q. Jin, C. Zhu, M. W. Borer and G. M. Hieftje, Spectrochim. Acta., 46B, 417-430 (1991).
  7. Q. Jin, H. Zhang, J. Anal. At. Spectrom., 9, 851-856 (1994). https://doi.org/10.1039/ja9940900851
  8. A. Besner and J. Hubert, Appl. Spectrosc., 52, 894-899 (1998). https://doi.org/10.1366/0003702981944454
  9. D. Boudreau and J. Hubert, Appl. Spectrosc., 47, 609-614 (1993). https://doi.org/10.1366/0003702934067234
  10. B. M. Spencer, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 48, 289-296 (1994). https://doi.org/10.1366/0003702944028326
  11. B. M. Spencer, A. R. Raghani, and J. D. Winefordner, Appl. Spectrosc., 48, 643-646 (1994). https://doi.org/10.1366/0003702944924763
  12. A. R. Hoskinson, J. Hopwood, N. W. Bostrom, J. A. Crank and C. Harrison, J. Anal. At. Spectrom., 26, 1258-65 (2011). https://doi.org/10.1039/c0ja00239a
  13. K. Jankowski, A. Ramsza, E. Reszke and M. Strzelec, J. Anal. At. Spectrom., 25, 44-47 (2010). https://doi.org/10.1039/b904428k
  14. A. Tyburska and K. Jankowski, Analytical Methods, 3, 659-663 (2011). https://doi.org/10.1039/c0ay00721h
  15. K. Jankowski, A. Jacowska, A. P. Ramsza and E. Reszke, J. Anal. At. Spectrom., 23, 1234-40 (2008). https://doi.org/10.1039/b803176b
  16. Y. Okamoto, Jpn. J. Appl. Phys., 38, L338-L341 (1999). https://doi.org/10.1143/JJAP.38.L338
  17. Y. Okamoto, M. Yasuda and S. Murayama, Jpn. J. Appl. Phys., 29, 670-672 (1990). https://doi.org/10.1143/JJAP.29.L670
  18. H. Yamada and Y. Okamoto, Appl. Spectrosc., 55, 114- 118 (2001). https://doi.org/10.1366/0003702011951623
  19. M. Ohata and N. Furuta, J. Anal. At. Spectrom., 12, 341-347 (1997). https://doi.org/10.1039/a605930i
  20. K. Ogura, H. Yamada, Y. Sato, and Y. Okamoto, Appl. Spectrosc., 51, 1496-1499 (1997). https://doi.org/10.1366/0003702971938984
  21. A. Matsumoto, A. Oheda and T. Nakahara, Anal. Sci., 17, 963-966. (2001). https://doi.org/10.2116/analsci.17.963
  22. Y. Okamoto, H. Murohashi and S. Wake, Anal. Sci., 17, 967-970. (2001).
  23. Z. Zhang and K. Wagatsuma, J. Anal. At. Spectrom., 17, 699-703 (2002). https://doi.org/10.1039/b202777c
  24. T. Maeda and K. Wagatsuma, Spectrochim. Acta., 60B, 81-87 (2005). https://doi.org/10.1016/j.sab.2004.10.011
  25. K. B. Cull and J. W. Carnahan, Appl. Spectrosc., 42, 1061-1065 (1988). https://doi.org/10.1366/0003702884430263
  26. Mingin Wu and J. W. Carnahan, Appl. Spectrosc., 46, 163-168 (1992). https://doi.org/10.1366/0003702924444489
  27. S. K. Chan, R. L. Van Hoven and A. Montaser, Anal. Chem., 58, 2342-2343 (1986). https://doi.org/10.1021/ac00124a050
  28. M. T. C. De Loos-Vollerbregt, J. J. Tiggelman and L. De Galan, Spectrochim. Acta., 43B, 773-781 (1988).
  29. D. J. Kalnicky, V. A. Fassel and R. N. Kniseley, Appl. Spectrosc., 31, 137-151 (1977). https://doi.org/10.1366/000370277774463832