DOI QR코드

DOI QR Code

Characterization for calmodulin binding activity of IQ motifs on the IQGAP3

IQGAP3에 존재하는 IQ 부위의 칼모듈린 결합 특성

  • Received : 2012.08.17
  • Accepted : 2012.09.20
  • Published : 2012.10.25

Abstract

IQ motif-containing GTPase-activating proteins (IQGAPs), which are well-known $Ca^{2+}$-independent calmodulin (CaM) binding proteins, are involved in various cellular functions such as cell proliferation, carcinogenesis and cell migration. The IQGAP3 similar to IQGAP1 has four repeated IQ motifs, which are crucial for CaM binding. It has been recently shown that all four IQ motifs of the IQGAP1 could bind to CaM, while not clear the binding of four IQ motifs of the IQGAP3. In this study, we examined the binding between CaM and each IQ motif of IQGAP3. As a result, we found that IQ2 and IQ3, but not IQ1 and IQ4, have a $Ca^{2+}$-independent CaM binding activity. We also found that IQ(3.5-4.4) on the IQGAP3 has $Ca^{2+}$-dependent CaM binding activity as similar with that of IQGAP1. This finding indicates that IQ motifs of the IQGAP3 plays a dynamic role via different interaction of IQ motifs with $Ca^{2+}$/CaM or apoCaM.

Keywords

IQGAP3;IQ motif;calmodulin;3xFLAG-hCaM co-immunoprecipitation

References

  1. J. Noritake, T. Watanabe, K. Sato, S. Wang, S. and K. Kaibuchi, J. Cell Sci., 118(Pt 10), 2085-2092 (2005). https://doi.org/10.1242/jcs.02379
  2. C. D. White, M. D. Brown and D. B. Sacks, FEBS Lett., 583(12), 1817-1824 (2009). https://doi.org/10.1016/j.febslet.2009.05.007
  3. C. D. White, H. H. Erdemir and D. B. Sacks, Cell Signal, 24, 826-34 (2012). https://doi.org/10.1016/j.cellsig.2011.12.005
  4. M. W. Briggs and D. B. Sacks, FEBS Lett., 542(1-3), 7-11 (2003). https://doi.org/10.1016/S0014-5793(03)00333-8
  5. Y. D. Ho, J. L. Joyal, Z. Li and D.B. Sacks, J. Biol. Chem., 274(1), 464-470 (1999). https://doi.org/10.1074/jbc.274.1.464
  6. Z. Li, S. H. Kim, J. M. Higgins, M. B. Brenner and D. B. Sacks, J. Biol. Chem., 274(53), 37885-37892 (1999). https://doi.org/10.1074/jbc.274.53.37885
  7. M. W. Briggs, Z. Li and D. B. Sacks, J. Biol. Chem., 277(9), 7453-7465 (2002). https://doi.org/10.1074/jbc.M104315200
  8. S. C. Mateer, A. E. McDaniel, V. Nicolas, G. M. Habermacher, M. J. Lin, D. A. Cromer, M. E. King and G. S. Bloom, J. Biol. Chem., 277(14), 12324-12333 (2002). https://doi.org/10.1074/jbc.M109535200
  9. L. Weissbach, J. Settleman, M. F. Kalady, A. J. Snijders, A. E. Murthy, Y. X. Yan and A. Bernards, J. Biol. Chem., 269, 20517-21 (1994).
  10. S. Wang, et al., J. Cell. Sci. 120, 567-77 (2007). https://doi.org/10.1242/jcs.03356
  11. H. Nojima, M. Adachi, T. Matsui, K. Okawa and S. Tsukita, Nat. Cell Biol., 10, 971-8 (2008). https://doi.org/10.1038/ncb1757
  12. Z. Li and D. B. Sacks, J. Biol. Chem., 278(6), 4347- 4352 (2003). https://doi.org/10.1074/jbc.M208579200
  13. D. J. Jang, B. Ban and J. A. Lee, Mols. Cells, 32, 511-8 (2011). https://doi.org/10.1007/s10059-011-0109-4
  14. D. J. Jang, Analytical Science & Technology, 120, 567- 77 (2011).
  15. E. Atcheson, E. Hamilton, S. Pathmanathan, B. Greer, P. Harriott and D. J. Timson, Biosci Rep, 31(Pt5), 371- 379 (2011). https://doi.org/10.1042/BSR20100123
  16. M. Bahler and A. Rhoads, FEBS Lett., 513(1), 107-113 (2002). https://doi.org/10.1016/S0014-5793(01)03239-2