DOI QR코드

DOI QR Code

The Synthetic Melanin Nanoparticles Having An Excellent Binding Capacity of Heavy Metal Ions

  • Received : 2012.07.16
  • Accepted : 2012.08.20
  • Published : 2012.11.20

Abstract

Spherical-shape melanin nanoparticles with good water-dispersibility were successfully synthesized by a simple oxidation polymerization of 3,4-dihydroxy-phenylalanin (DOPA) with $KMnO_4$. Similar features to those known from natural and synthetic melanin polymers were observed from prepared melanin nanoparticles by FT-IR, UV-Vis., and ESR spectroscopic methods. Their binding ability with several heavy metal ions from aqueous solution was quantitatively investigated, and the maximum binding capacities with melanin nanoparticles to lead, copper, and cadmium ions were obtained as 2.45, 2.17 and 1.88 mmol/g, respectively, which are much larger values than those reported from natural and synthetic melanin polymers. The large binding capacity and fast binding rate of melanin nanoparticles to metal ions can make them an excellent candidate for the remediation of contaminated water.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Meredith, P.; Sarna, T. Pigm. Cell Res. 2006, 19, 572. https://doi.org/10.1111/j.1600-0749.2006.00345.x
  2. Mason, H. S. J. Biolog. Chem. 1948, 172, 83.
  3. Raper, H. S. Physiol. Rev. 1928, 8, 245. https://doi.org/10.1152/physrev.1928.8.2.245
  4. Aroca, P.; Solano, F.; Garcia- Borron, J. C.; Lozano, J. A. J. Biochem. Biophys. Methods 1990, 21, 35. https://doi.org/10.1016/0165-022X(90)90043-C
  5. Liu, Y.; Simon, J. D. Pigm. Cell Res. 2005, 18, 42. https://doi.org/10.1111/j.1600-0749.2004.00197.x
  6. Simon, J. D.; Hong, L.; Peles, D. N. J. Phys. Chem. B 2008, 112, 13201. https://doi.org/10.1021/jp804248h
  7. Dadachova, E.; Bryan, R. A.; Howell, R. C.; Schweitzer, A. D.; Aisen, P.; Nosanchuk, J. D.; Casadevall, A. Pigm. Cell Melanoma R 2008, 21, 192.
  8. Hung, Y. C.; Sava, V. M.; Juang, C. L.; Yeh, T. C.; Shen, W. C.; Huang, G. W. S. J. Ethnopharmacol. 2002, 79, 75. https://doi.org/10.1016/S0378-8741(01)00358-0
  9. Hong, L.; Simon, J. D. J. Phys. Chem. B 2007, 111, 7938. https://doi.org/10.1021/jp071439h
  10. Potts, A. M. Invest. Ophth. Vis. Sci. 1964, 3, 405.
  11. Tisma, M.; Znidarsic-Plazl, P.; Plazl, I.; Zelic, B.; Vasic-Racki, D. Chem. Biochem. Eng. Q 2008, 22, 307.
  12. Boyer, R. F. Abstr. Pap. Am. Chem. S 1984, 188, 34.
  13. Nofsinger, J. B.; Eibest, L. M.; Gold, K. A.; Simon, J. D. Pigm. Cell Res. 2000, 13, 179. https://doi.org/10.1034/j.1600-0749.2000.130310.x
  14. Bowness, J. M.; Morton, R. A.; Shakr, M. H.; Stubbs, A. L. Biochem. J. 1952, 51, 521. https://doi.org/10.1042/bj0510521
  15. White, L. P. Nature 1958, 182, 1427. https://doi.org/10.1038/1821427a0
  16. Potts, A. M.; Au, P. C. Exp. Eye Res. 1976, 22, 487. https://doi.org/10.1016/0014-4835(76)90186-X
  17. Felix, C. C.; Hyde, J. S.; Sarna, T.; Sealy, R. C. J. Am. Chem. Soc. 1978, 100, 3922. https://doi.org/10.1021/ja00480a044
  18. Sarzanini, C.; Mentasti, E.; Abollino, O.; Fasano, M.; Aime, S. Mater. Chem. 1992, 39, 243.
  19. Hong, L.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 477. https://doi.org/10.1562/2004-05-17-RA-172.1
  20. Samokhvalov, A.; Liu, Y.; Simon, J. D. Photochem. Photobio. 2004, 80, 84. https://doi.org/10.1562/2004-01-18-RA-047.1
  21. Watt, A. A. R.; Bothma, J. P.; Meredith, P. Soft Matter 2009, 5, 3754. https://doi.org/10.1039/b902507c
  22. Hong, L.; Simon, J. D. Photochem. Photobio. 2009, 81, 517.
  23. Commoner, B.; Townsend, J.; Pake, G. E. Nature 1954, 174, 689. https://doi.org/10.1038/174689a0
  24. Robinson, G. M.; Smyth, M. R. Analyst 1997, 122, 797. https://doi.org/10.1039/a701844d
  25. Di, J. W.; Bi, S. P. Spectrochim. Acta A 2003, 59, 3075. https://doi.org/10.1016/S1386-1425(03)00127-6
  26. Afkhami, A.; Nematollahi, D.; Khalafi, L.; Rafiee, M. Int. J. Chem. Kinet. 2005, 37, 17. https://doi.org/10.1002/kin.20046
  27. Lauren, M. H.; Wilker, J. J. J. Mater. Sci. 2007, 42, 8934. https://doi.org/10.1007/s10853-007-1648-0
  28. Herlinger, E.; Jameson, R. F.; Linert, W. J. Chem. Soc., Perkin Trans. 2 1995, 259.
  29. Bruenger, F. W.; Stover, B. J.; Atherton, D. R. Radiat. Res. 1967, 32, 1. https://doi.org/10.2307/3572300
  30. Boggess, R. K.; Martin, R. B. J. Am. Chem. Soc. 1975, 97, 3076. https://doi.org/10.1021/ja00844a026
  31. Pilbrow, J. R.; Carr, S. G.; Smith, T. D. J. Chem. Soc. A: Inorganic, Physical, Theoretical 1970, 723. https://doi.org/10.1039/j19700000723
  32. Sarna, T.; Hyde, J.; Swartz, H. Science 1976, 192, 1132. https://doi.org/10.1126/science.179142
  33. Blois, M. S.; Zahlan, A. B.; Maling, J. E. Biophys. J. 1964, 4, 471. https://doi.org/10.1016/S0006-3495(64)86797-7
  34. Sarna, T.; Lukiewicz, S. Folia Histochem. Cytochem. 1972, 10, 265.
  35. Liu, Y.; Hong, L.; Kempf, V. R.; Wakamatsu, K.; Ito, S.; Simon, J. D. Pigm. Cell Res. 2004, 17, 262. https://doi.org/10.1111/j.1600-0749.2004.00140.x
  36. Zhang, L.-M.; Chen, D.-Q. Coll. Surfaces A: Physicochem. Eng. Aspects 2002, 205, 231. https://doi.org/10.1016/S0927-7757(02)00039-0
  37. Pan, B.; Qiu, H.; Pan, B.; Nie, G.; Xiao, L.; Lv, L.; Zhang, W.; Zhang, Q.; Zheng, S. Water Res. 2010, 44, 815. https://doi.org/10.1016/j.watres.2009.10.027
  38. Duran, A.; Soylak, M.; Tuncel, S. A. J. Hazard. Mater. 2008, 155, 114. https://doi.org/10.1016/j.jhazmat.2007.11.037
  39. Hai, B.; Wu, J.; Chen, X.; Protasiewicz, J. D.; Scherson, D. A. Langmuir 2005, 21, 3104. https://doi.org/10.1021/la0487139
  40. Zhao, G. X. S.; Lee, J. L.; Chia, P. A. Langmuir 2003, 19, 1977. https://doi.org/10.1021/la026490l

Cited by

  1. Dopa/Catechol-Tethered Polymers: Bioadhesives and Biomimetic Adhesive Materials vol.54, pp.3, 2014, https://doi.org/10.1080/15583724.2014.881373
  2. Site-Specific In Situ Synthesis of Eumelanin Nanoparticles by an Enzymatic Autodeposition-Like Process vol.16, pp.5, 2015, https://doi.org/10.1021/acs.biomac.5b00187
  3. Water Soluble Melanin of Streptomyces lusitanus DMZ3 Persuade Synthesis of Enhanced Bio-medically Active Silver Nanoparticles vol.26, pp.4, 2015, https://doi.org/10.1007/s10876-014-0798-x
  4. Evaluation of the Practicality of Melanin as a Photodynamic-Inactivation Photosensitizer by Its Nanonization vol.28, pp.6, 2015, https://doi.org/10.2494/photopolymer.28.739
  5. On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties vol.5, pp.106, 2015, https://doi.org/10.1039/C5RA18965A
  6. One-pot green synthesis of eumelanin: process optimization and its characterization vol.5, pp.59, 2015, https://doi.org/10.1039/C5RA01962A
  7. Melanin: A Naturally Existing Multifunctional Material vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1029
  8. Enzyme-Mediated In Situ Synthesis and Deposition of Nonaggregated Melanin Protoparticles vol.301, pp.7, 2016, https://doi.org/10.1002/mame.201500315
  9. Nanoarchitecturing of Natural Melanin Nanospheres by Layer-by-Layer Assembly: Macroscale Anti-inflammatory Conductive Coatings with Optoelectronic Tunability vol.18, pp.6, 2017, https://doi.org/10.1021/acs.biomac.7b00336
  10. The Supramolecular Buildup of Eumelanin: Structures, Mechanisms, Controllability vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091901
  11. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress vol.117, pp.6, 2015, https://doi.org/10.1063/1.4907997