Environmental Applications of Rare-Earth Manganites as Catalysts: A Comparative Study

Alami, D.

  • Received : 2013.05.01
  • Accepted : 2013.08.01
  • Published : 2013.12.30


Rare-earth manganites have a great potential for environmental applications based on their chemical and physical properties. The use of rare-earth manganites as catalysts for environmentally essential reactions was reviewed. Artificial neural networks were used to assess the catalytic activity in oxidation reactions. Relative catalytic activities of the catalysts were further discussed. We concluded that cerium manganite is the most practicable catalyst for technological purposes.


Artificial neural networks;Catalytic activity;Enthalpy of formation;Environmental catalysis;Rare-earth manganites


  1. Duffy JA, Ingram MD. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Ceram. Soc. 1971;93:6448-6454.
  2. Smith W. An acidity scale for binary oxides. J. Chem. Educ. 1987;64:480-481.
  3. Portier J, Poizot P, Campet G, Subramanian MA, Tarascon JM. Acid-base behavior of oxides and their electronic structure. Solid State Sci. 2003;5:695-699.
  4. Baerns M, Holena M. Combinatorial development of solid catalytic materials: design of high-throughput experiments, data analysis, data mining. London: Imperial College Press; 2009.
  5. Jain AK, Mao J, Mohiuddin KM. Artificial neural networks: a tutorial. IEEE Computer 1996;29:31-44.
  6. Buhmann MD. Radial basis functions: theory and implementations. New York: Cambridge University Press; 2003.
  7. Hassoun MH. Fundamentals of artificial neural networks. Cambridge: MIT Press; 1995.
  8. Sridhar DV, Seagrave RC, Bartlett EB. Process modeling using stacked neural networks. AlChE J. 1996;42:2529-2539.
  9. Tompos A, Margitfalvi JL, Tfirst E, Vegvari L. Information mining using artificial neural networks and "holographic research strategy". Appl. Catal. A 2003;254:161-168.
  10. Burden FR. Mapping analytic functions using neural networks. J. Chem. Inf. Comput. Sci. 1994;34:1229-1231.
  11. Sha W, Edwards KL. The use of artificial neural networks in materials science based research. Mater. Des. 2007;28:1747-1752.
  12. Dash S, Singh Z, Parida SC, Venugopal V. Thermodynamic studies on $Rb_2ThO_3$(s). J. Alloys Compd. 2005;398:219-227.
  13. Diaconescu R, Dumitriu E. Applications of artificial neural networks in environmental catalysis. Environ. Eng. Manag. J. 2005;4:473-498.
  14. Rothenberg G. Data mining in catalysis: separating knowledge from garbage. Catal. Today 2008;137:2-10.
  15. Hecht-Nielsen R. Replicator neural networks for universal optimal source coding. Science 1995;269:1860-1863.
  16. Sontag ED. Feed forward nets for interpolation and classification. J. Comput. Sys. Sci. 1992;45:20-48.
  17. Morss LR, Konings RJM. Thermochemistry of binary rare earth oxides. Dordrecht: Kluwer Academic Publishers, 2006.
  18. Available from:
  19. Centi G, Ciambelli P, Perathoner S, Russo P. Environmental catalysis: trends and outlook. Catal. Today 2002;75:3-15.
  20. Pena MA, Fierro JL. Chemical structures and performance of perovskite oxides. Chem. Rev. 2001;101:1981-2018.
  21. Abordeoaei L, Papp HI. Perovskite utilisation as catalysts in NO reduction by SCR-HC in absence of $O_2$. Environ. Eng. Manag. J. 2004;3:755-760.
  22. Laberty C, Navrotsky A, Rao CN, Alphonse P. Energetics of rare earth manganese perovskites A1-xA'xMn$O_3$ (A=La, Nd, Y and A'=Sr, La) systems. J. Solid State Chem. 1999;145:77-87.
  23. Uemura S, Mitsudo T, Haruta M, Inui T. Frontiers and tasks of catalysis towards the next century. Proceedings of the International Symposium in honour of Professor Tomoyuki Inui. Utrecht: VSP; 1998.
  24. Isupova LA, Sadykov VA, Solovyova LP, et al. Monolith perovskite catalysts of honeycomb structure for fuel combustion. Stud. Surf. Sci. Catal. 1995;91:637-645.
  25. Spinicci R, Faticanti M, Marini P, De Rossi S, Porta P. Catalytic activity of $LaMnO_3$ and $LaCoO_3$ perovskites towards VOCs combustion. J. Mol. Catal. A Chem. 2003;197:147-155.
  26. Chirila LM, Papp H, Suprun W, Balasanian I. Synthesis, characterization and catalytic reduction of $NO_x$ emissions over $LaMnO_3$ perovskite. Environ. Eng. Manag. J. 2007;6:549-553.
  27. Yonghua C, Futai M, Hui L. Catalytic properties of rare earth manganites and related compounds. React. Kinet. Catal. Lett. 1988;37:37-42.
  28. Liu Y, Dai H, Du Y, et al. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous $LaMnO_3$ with nanovoid skeletons for the combustion of toluene. J. Catal. 2012;287:149-160.
  29. Li C, Lin Y. Methanol partial oxidation over palladium-, platinum-, and rhodium-integrated $LaMnO_3$ perovskites. Appl. Catal. B 2011;107:284-293.
  30. Zhang C, Wang C, Zhan W, et al. Catalytic oxidation of vinyl chloride emission over $LaMnO_3$ and $LaB_{0.2}Mn_{0.8}O_3$ (B=Co, Ni, Fe) catalysts. Appl. Catal. B 2013;129:509-516.
  31. Ran R, Wu X, Quan C, Weng D. Effect of strontium and cerium doping on the structural and catalytic properties of $PrMnO_3$ oxides. Solid State Ion. 2005;176:965-971.
  32. Tang X, Li Y, Huang X, et al. $MnO_xCeO_2$ mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B 2006;62:265-273.
  33. Liu J, Zhao Z, Xu C. Research progress in catalysts for removal of soot particulates from diesel engines. Chin. J. Catal. 2004;25:673-680.
  34. Raj SL, Srinivasan V. Decomposition of nitrous oxide on rare earth manganites. J. Catal. 1980;65:121-126.
  35. Lombardo EA, Ulla MA. Perovskite oxides in catalysis: past, present and future. Res. Chem. Intermed. 1998;24:581-592.
  36. Arai H, Yamada T, Eguchi K, Seiyama T. Catalytic combustion of methane over various perovskite-type oxides. Appl. Catal. 1986;26:265-276.
  37. Lintz HG, Wittstock K. Catalytic combustion of solvent containing air on base metal catalysts. Catal. Today 1996;29:457-461.
  38. Luna AJ, Rojas LOA, Melo DMA, Benachour M, Sousa JF. Total catalytic wet oxidation of phenol and its chlorinated derivates with $MnO_2$/$CeO_2$ catalyst in a slurry reactor. Braz. J. Chem. Eng. 2009;26:493-502.
  39. Zhou G, Shah PR, Gorte RJ. A study of cerium-manganese mixed oxides for oxidation catalysis. Catal. Lett. 2008;120:191-197.
  40. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011;3:546-550.
  41. Rezlescu N, Rezlescu E, Doroftei C, Popa PD, Ignat M. Nanostructured lanthanum manganite perovskites in catalyst applications. Dig. J. Nanomater. Biostruct. 2013;8:581-587.
  42. Arakawa T, Yoshida A, Shiokawa J. The catalytic activity of rare earth manganites. Mater. Res. Bull. 1980;15:269-273.
  43. Yamazoe N, Teraoka Y. Oxidation catalysis of perovskites: relationships to bulk structure and composition (valency, defect, etc.). Catal. Today 1990;8:175-199.
  44. Voorhoeve RJ, Johnson DW Jr, Remeika JP, Gallagher PK. Perovskite oxides: materials science in catalysis. Science 1977;195:827-833.
  45. Kalashnikova AM, Pisarev RV. Electronic structure of hexagonal rare-earth manganites $RMnO_3$. J. Exp. Theor. Phys. Lett. 2003;78:143-147.
  46. Moro-Oka Y, Morikawa Y, Ozaki A. Regularity in the catalytic properties of metal oxides in hydrocarbon oxidation. J. Catal. 1967;7:23-32.
  47. Vijh AK, Lenfant P. Significance of heterogeneous catalysis of certain oxidation reactions by oxides in relation to their heats of formation. Can. J. Chem. 1971;49:809-812.
  48. Aronson S. Estimation of the heat of formation of refractory mixed oxides. J. Nucl. Mater. 1982;107:343-346.
  49. Vonka P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in $Al_2O_3$-$Ln_2O_3$ systems. J. Solid State Chem. 2009;182:744-748.
  50. Yokokawa H, Kawada T, Dokiya M. Thermodynamic regularities in perovskite and $K_2NiF_4$ compounds. J. Am. Ceram. Soc. 1989;72:152-153.
  51. Stolen S, Grande T. Chemical thermodynamics of materials: macroscopic and microscopic aspects. Hoboken: John Wiley and Sons; 2004.

Cited by

  1. Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite vol.31, pp.8, 2014,
  2. Diluents Role in Extraction and Possible Separation of Light Rare Earth Elements from Chloride Solutions by using Cyanex® 272 used as an Extractant vol.56, pp.10, 2018,