DOI QR코드

DOI QR Code

Spectroscopic, Thermal and Biological Studies of Zn(II), Cd(II) and Hg(II) Complexes Derived from 3-Aminopyridine and Nitrite Ion

  • Dhaveethu, Karuthakannan ;
  • Ramachandramoorthy, Thiagarajan ;
  • Thirunavukkarasu, Kandasamy
  • Received : 2013.08.12
  • Accepted : 2013.09.15
  • Published : 2013.12.20

Abstract

Microwave assisted syntheses of Zn(II), Cd(II) and Hg(II) complexes with 3-aminopyridine (3AP) and nitrite ($NO_2{^-}$) ions have been reported. The metal complexes were characterized by elemental analyses, molar conductance, IR, Far-IR, electronic, NMR ($^1H$, $^{13}C$), thermal and electron impact mass spectral studies. The spectroscopic studies reveal the composition, the nature of nitrite ligand in the complexes, electronic transitions, chemical environments of C and H atoms thermal degradation of the complexes. On the basis of characterization data, distorted tetrahedral geometry is suggested for Zn(II), Cd(II) and Hg(II) complexes. The organic ligand (3AP) and their metal complexes were screened against gram negative pathogenic bacteria and fungi in vitro. The results are compared with our previous report J. Korean Chem. Soc. 2013, 57, 341 on 4-aminopyridine and nitrite ion complexes of the same metal ions.

Keywords

3-Aminopyridine;Nitro complex;Mixed ligand complexes;Biological activities

References

  1. Boerner, L. J. K.; Zeleski, J. M. Curr. Opin. Chem. Biol. 2005, 9, 135. https://doi.org/10.1016/j.cbpa.2005.02.010
  2. Sakurai, H.; Koyima, Y.; Yoshikawa, Y.; Kawabe. K.; Yasni, H. Coord. Chem. Rev. 2002, 226, 187. https://doi.org/10.1016/S0010-8545(01)00447-7
  3. Barton, J. K.; Goldberg, J. M.; Kumar, C. V.; Turro, N. J. J. Am. Chem. Soc. 1986, 108, 2081. https://doi.org/10.1021/ja00268a057
  4. Delaney, S.; Pascaly, M.; Bhattacharya, P. K.; Han, K.; Barton, J. K. Inorg. Chem. 2002, 41, 1966. https://doi.org/10.1021/ic0111738
  5. Sigel, H. Inorg. Chem. 1980, 19, 1411. https://doi.org/10.1021/ic50207a069
  6. Nagar, R. J. Inorg. Biochem. 1990, 40, 349. https://doi.org/10.1016/0162-0134(90)80069-A
  7. Cavagiolio, G.; Benedetto, L.; Boccaleri, E.; Colangelo, D.; Viano, I.; Osella, D. Inorg. Chim. Acta 2000, 305, 61. https://doi.org/10.1016/S0020-1693(00)00114-6
  8. Highfield, J. A.; Mehta L. K.; Parrick, J.; Wardman, P. Bioorg. Med. Chem. 2000, 8, 1065. https://doi.org/10.1016/S0968-0896(00)00042-0
  9. Paterson, J. W.; Conolly, M. E.; Dollery, C. Eur. J. Clin. Pharmacol. 1970, 2, 127.
  10. Zhang, L.; Guarente, L. EMBO J. 1996, 15, 4676.
  11. George, G. N.; Bray, R. C.; Cramer, S. P. Biochem. Soc. Trans. 1986, 14, 651.
  12. Tumer, M.; Koksal, H.; Sener, M. K.; Serin, S. Trans. Met. Chem. 1999, 24, 414. https://doi.org/10.1023/A:1006973823926
  13. Dolaz, M.; Mckee, V.; Goku, A. E.; Tumer, M. Spectrochim. Acta, Part A 2009, 71, 1648. https://doi.org/10.1016/j.saa.2008.06.012
  14. Bucinski, A.; Socha, A.; Wnuk, M.; Baczek T.; Nowaczyk, A.; Krysinski, J.; Gorynski, K.; Koba, M. J. Microbiol. Methods 2009, 76, 25. https://doi.org/10.1016/j.mimet.2008.09.003
  15. Sakurai, H.; Koyima, Y.; Yoshikawa, Y.; Kawabe, K.; Yasni, H. Coord. Chem. Rev. 2002, 226, 187. https://doi.org/10.1016/S0010-8545(01)00447-7
  16. Tapiero, H.; Tew, K. D. Biomed. Pharmacother. 2003, 57, 399. https://doi.org/10.1016/S0753-3322(03)00081-7
  17. Zhao, M.; Matter, K.; Laissue, J. A.; Zimmermann, A. Histol. Histopathol. 1996, 11, 899.
  18. Dhaveethu, K.; Ramachandramoorthy, T.; Thirunavukkarasu, K. J. Korean Chem. Soc. 2013, 57, 341. https://doi.org/10.5012/jkcs.2013.57.3.341
  19. Mohamed, G. G.; Abd-El-Wahab, Z. H. Spectrochim. Acta, Part A 2005, 61, 1059. https://doi.org/10.1016/j.saa.2004.06.021
  20. Raman, N.; Kulandaisamy, A.; Thangaraja, C.; Jeyasubramanian, K. Trans. Met. Chem. 2003, 28, 29. https://doi.org/10.1023/A:1022544126607
  21. Chaudhary, A.; Singh, R. V. Phosphorous, Sulphur Silicon Relat. Elem. 2003, 178, 603. https://doi.org/10.1080/10426500307927
  22. Kelkar, V. D.; Kanase, D. G.; Kadam, S. S.; Takale, S. T. Asian J. Chem. 2007, 19, 3597.
  23. Spinner, E. J. Chem. Soc. 1962, 3119. https://doi.org/10.1039/jr9620003119
  24. Carmona, P.; Molina, M.; Escobar, R. Spectrochim. Acta 1993, 49, 1. https://doi.org/10.1016/0584-8539(93)80255-9
  25. Bakiler, M.; Maslov, I. V.; Akyuz, S. J. Mol. Struct. 1999, 475, 83. https://doi.org/10.1016/S0022-2860(98)00491-8
  26. Akyuz, S.; Dempster, A. B.; Morehouse, R. L.; Suzuki S. J. Mol. Struct. 1973, 17, 105. https://doi.org/10.1016/0022-2860(73)85047-1
  27. Chattapadhyay, T.; Ghosh, M.; Majee, A.; Nethaji, M.; Das, D. Polyhedron 2005, 24, 1677. https://doi.org/10.1016/j.poly.2005.04.039
  28. Basolo, F.; Hammaker, G. S. J. Am. Chem. Soc. 1960, 82, 1001. https://doi.org/10.1021/ja01489a061
  29. Nakamoto, K.; Fujita, J.; Murata, H. J. Am. Chem. Soc. 1958, 80, 4817. https://doi.org/10.1021/ja01551a016
  30. Goodgame, D. M. L.; Hitchman, M. A. Inorg. Chem. 1964, 3, 1389. https://doi.org/10.1021/ic50020a010
  31. Blyholder, G.; Kittila, A. J. Phys. Chem. 1963, 67, 2147. https://doi.org/10.1021/j100804a042
  32. Patel, M. N.; Patel, S. H.; Pansuriya, P. B. Med. Chem. Res. 2011, 20, 1371. https://doi.org/10.1007/s00044-010-9486-z
  33. Brewer, D. G.; Wong, P. T. T.; Sears, M. C. Canadian. J. Chem. 1968, 46, 3137. https://doi.org/10.1139/v68-522
  34. Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier: London, 1968; p 336.
  35. Cotton, F. A.; Wise, J. J. Am. Chem. Soc. 1966, 88, 3451. https://doi.org/10.1021/ja00966a061
  36. Cotton, F. A.; Wise J. Inorg. Chem. 1967, 6, 917. https://doi.org/10.1021/ic50051a014
  37. Koleva, B. B.; Trendafilova, E. N. Trans. Met. Chem. 2006, 31, 866. https://doi.org/10.1007/s11243-006-0078-1
  38. Xia, N.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 337. https://doi.org/10.1002/anie.200802569
  39. Hassib, H. B.; Latif, S. A. Spectrochim. Acta 2003, 59, 2425. https://doi.org/10.1016/S1386-1425(03)00010-6
  40. Materazzi, S.; Vasca, E. Thermochim. Acta 2001, 373, 7. https://doi.org/10.1016/S0040-6031(01)00461-0
  41. Drago, R. S. Physical Methods in Chemistry; W. B. Saunders Company: London, 1977.