DOI QR코드

DOI QR Code

Structural and Spectral Characterization of a Chromium(III) Picolinate Complex: Introducing a New Redox Reaction

  • Hakimi, Mohammad
  • Received : 2013.08.21
  • Accepted : 2013.09.22
  • Published : 2013.12.20

Abstract

Reaction between 2-pyridinecarboxylic acid (Hpic) and $K_3[Cr(O_2)_4]$ give complex $[Cr(pic)_3].H_2O$ (1) which is characterized by elemental analysis and spectroscopic methods (FT-IR, Raman) and X-ray crystallography. In the crystal structure of 1, chromium atom with coordinated by three nitrogen and three oxygen atoms has a distorted octahedral geometry. Also a water molecule is incorporated in crystal network. Each water molecule acts as hydrogen bond bridging and connects two adjacent complexes by two $O-H{\cdots}O$ hydrogen bonds.

Keywords

Chromium(III) complex;Picolinate;Spectral characterization;X-ray crystal structure

References

  1. (a) Wachter, G. A.; Davis, M. C.; Martin, A. R.; Franzblau, S. G. J. Med. Chem. 1998, 41, 2436. https://doi.org/10.1021/jm9708745
  2. (b) Jew, S.; et al. Bioorg. Med. Chem. Lett. 2003, 13, 609. https://doi.org/10.1016/S0960-894X(02)01041-7
  3. Li, G.; Qian, X.; Cui, J.; Huang, Q.; Zhang, R.; Guan, H. J. Agric. Food. Chem. 2006, 54, 125. https://doi.org/10.1021/jf051928j
  4. (a) Strearns, D. M.; Armstrong, W. H., Inorg. Chem. 1992, 31, 5178. https://doi.org/10.1021/ic00051a007
  5. (b) Gonzales-Vergara, E.; Hegenauer, J.; Saltman, P.; Sabat, M.; Ibers, J. A. Inorg. Chim. Acta 1982, 66, 115. https://doi.org/10.1016/S0020-1693(00)85799-0
  6. (c) Grant-Mauk, A.; Coyle, C. L.; Bordignon, E.; Gray, H. B. J. Am. Chem. Soc. 1979, 101, 5054. https://doi.org/10.1021/ja00511a041
  7. (d) Libby, E.; Webb, R. J.; Streib, W. E.; Folting, K.; Huffman, J. C.; Hendrickson, D. N.; Christou, G., Inorg. Chem. 1989, 28, 4037. https://doi.org/10.1021/ic00320a020
  8. (e) Jfns, O.; Johansen, E. S., Inorg. Chim. Acta 1988, 151, 129. https://doi.org/10.1016/S0020-1693(00)91893-0
  9. (f) Dixit, S. C.; Sharan, R.; Kapoor, R. N. Inorg. Chim. Acta 1989, 158, 109. https://doi.org/10.1016/S0020-1693(00)84019-0
  10. (g) Li, W.; Olmstead, M. M.; Miggins, D.; Fish, R. H. Inorg. Chem. 1996, 35, 51. https://doi.org/10.1021/ic950503j
  11. (a) Hakimi, M.; Mardani, Z.; Moeini, K.; Fernandes, M. A. J. Coord. Chem. 2012, 65, 2221. https://doi.org/10.1080/00958972.2012.690145
  12. (b) Hakimi, M.; Mardani, Z.; Moeini, K.; Schuh, E.; Mohr, F. Z. Naturforsch. 2013, 68b, 272.
  13. (c) Hakimi, M.; Mardani, Z.; Moeini, K.; Schuh, E.; Mohr, F. Z. Naturforsch. 2013, 68b, 267.
  14. (d) Hakimi, M.; Moeini, K.; Mardani, Z.; Schuh, S.; Mohr, F. J. Coord. Chem. 2013, 66, 1129. https://doi.org/10.1080/00958972.2013.775648
  15. (e) Hakimi, M.; Moeini, K.; Mardani, Z.; Khorrami, F. J. Korean Chem. Soc. 2013, 57, 352. https://doi.org/10.5012/jkcs.2013.57.3.352
  16. (f) Hakimi, M.; Mardani, Z.; Moeini, K.; Mohr, F.; Fernandes, M. A. Polyhedron 2014, 67, 27. https://doi.org/10.1016/j.poly.2013.08.065
  17. Nguyen, T.; Panda, A.; Olmstead, M. M.; Richards, A. F.; Stender, M.; Brynda, M.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 8545. https://doi.org/10.1021/ja042958q
  18. Groysman, S.; Villagran, D.; Nocera, D. G. Inorg. Chem. 2010, 49, 10759. https://doi.org/10.1021/ic101968s
  19. Cotton, F. A.; Rice, C. E.; Rice, G. W. Inorg. Chim. Acta 1977, 24, 231. https://doi.org/10.1016/S0020-1693(00)93880-5
  20. Monillas, W. H.; Yap, G. P. A.; Theopold, K. H. J. Chem. Cryst. 2011, 41, 415. https://doi.org/10.1007/s10870-010-9943-z
  21. Hakimi, M.; Kukovec, B.-M.; Minoura, M. J. Chem. Crystallogr. 2012, 42, 290. https://doi.org/10.1007/s10870-011-0242-0
  22. Dingwall, J. G.; Tuck, B. Angew. Chem. Int. Ed. Engl. 1983, 22, 498.
  23. Ganesan, M.; Gabbai, F. P. Organometallics 2004, 23, 4608. https://doi.org/10.1021/om049675r
  24. Koide, H.; Uemura, M. Tetrahedron Lett. 1999, 40, 3443. https://doi.org/10.1016/S0040-4039(99)00462-1
  25. Barr, R. D.; Green, M.; Marsden, K.; Stone, F. G. A.; Woodward, P. J. Chem. Soc., Dalton Trans. 1983, 507.
  26. Braunstein, P.; Tiripicchio, A.; Tiripicchio-Camellini, M.; Sappa, E. Inorg. Chem. 1981, 20, 3586. https://doi.org/10.1021/ic50225a002
  27. Braga, D.; Eckert, M.; Fraccastoro, M.; Maini, L.; Grepi-oni, F.; Caneschi, A.; Sessoli, R. New J. Chem. 2002, 26, 1280. https://doi.org/10.1039/b205782d
  28. Aldridge, S.; Hashimoto, H.; Kawamura, K.; Shang, M.; Fehlner, T. P. Inorg. Chem. 1998, 37, 928. https://doi.org/10.1021/ic971251k
  29. Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 1996.
  30. Sheldrick, G. M. SHELXS/L-97: Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 1997.
  31. Spek, A. L. PLATON: A Multipurpose Crystallographic Tool, Utrecht University: Utrecht, The Netherlands, 2010.
  32. Stearns, D. M.; Armstrong, W. H. Inorg. Chem. 1991, 31, 5178.
  33. SAINT+: Bruker Advanced X-ray Solutions, version 7.60A; Bruker AXS Inc.; Madison, Wisconsin, USA, 2008.
  34. (a) Hakimi, M.; Mardani, Z.; Moeini, K.; Mohr, F.; Schuh, E.; Vahedi, H. Z. Naturforsch. 2012, 67b, 452. https://doi.org/10.5560/ZNB.2012-0064
  35. (b) Hakimi, M.; Mardani, Z.; Moeini, K. J. Korean Chem. Soc. 2013, 57, 447. https://doi.org/10.5012/jkcs.2013.57.4.447
  36. Hakimi, M.; Mardani, Z.; Moeini, K.; Minoura, M.; Raissi, H. Z. Naturforsch. 2011, 66b, 1122.
  37. Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; John Wiley & Sons: Hoboken, 2009; p 208.
  38. (a) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
  39. (b) Burnett, M. N.; Johnson, C. K., ORTEP-III, Report ORNL- 6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A., 1996.
  40. Macrae, C. F.; et al. J. Appl. Crystallogr. 2008, 41, 466. https://doi.org/10.1107/S0021889807067908
  41. Hakimi, M.; Kukovec, B. M.; Minoura, M. J. Chem. Crystallogr. 2012, 42, 290. https://doi.org/10.1007/s10870-011-0242-0
  42. Desiraju, G. R.; Steiner, T. In The Weak Hydrogen Bond: IUCr Monographs on Crystallography 9, Oxford University Press: Oxford, 1999; p 12.

Cited by

  1. Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr3+ vol.216, 2015, https://doi.org/10.1016/j.snb.2015.04.043