Multi-Nuclear NMR Investigation of Nickel(II), Palladium(II), Platinum(II) and Ruthenium(II) Complexes of an Asymmetrical Ditertiary Phosphine

  • Raj, Joe Gerald Jesu ;
  • Pathak, Devendra Deo ;
  • Kapoor, Pramesh N.
  • Received : 2013.09.27
  • Accepted : 2013.10.24
  • Published : 2013.12.20


Complexes synthesized by reacting alkyl and aryl phosphines with different transition metals are of great interest due to their catalytic properties. Many of the phosphine complexes are soluble in polar solvents as a result they find applications in homogeneous catalysis. In our present work we report, four transition metal complexes of Ni(II), Pd(II), Pt(II) and Ru(II) with an asymmetrical ditertiaryphosphine ligand. The synthesized ligand bears a less electronegative substituent such as methyl group on the aromatic nucleus hence makes it a strong ${\sigma}$-donor to form stable complexes and thus could effectively used in catalytic reactions. The complexes have been completely characterized by elemental analyses, FTIR, $^1HNMR$, $^{31}PNMR$ and FAB Mass Spectrometry methods. Based on the spectroscopic evidences it has been confirmed that Ni(II), Pd(II) and Pt(II) complexes with the ditertiaryphosphine ligand showed cis whereas the Ru(II) complex showed trans geometry in their molecular structure.




  1. J. C. Lima.; L. Rodriguez. Anti. Cancer. Agent. Med. Chem. 2011, 11(10), 921.
  2. Budzisz, E.; Krajewska, U..; Rozalski, M..; Szulawska, A. M.; Czyz, B. N. Eur. J. Pharm. 2004, 502, 59.
  3. Ray, S.; Mohan, R.; Singh, J. K.; Samantaray, M. K.; Shaikh, M. M.; Panda, D.; Ghosh, P. J. Am. Chem. Soc. 2007, 129, 15042.
  4. Singh, R. V.; Fahmi, N.; Biyala, M. K. J. Iran. Chem. Soc. 2005, 2, 40.
  5. Hausoul, P. J. C.; Lutz, M.; Jastrzebski, J. T. B. H.; Bruijnincx, P. C. A.; Weckhuysen, B. M. and Gebbink, R. J. M. K. Organometallics 2013, 32, 5047.
  6. Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Nat. Rev. Drug Discov. 2002, 1, 493.
  7. Forsch, R. A.; Queener, S. F.; Rosowsky, A. Bioorg. Med. Chem. Lett. 2004, 14, 1811.
  8. Tomori, H.; Fox, J. M.; Buchwald, S. L. J. Org. Chem. 2000, 65, 5334.
  9. Lightowler, S.; Hird, M. Chem. Mater. 2005, 17, 5538.
  10. Fujihara, T.; Yoshida, S.; Terao, J.; Tsuji, Y. Org. Lett. 2009, 11, 2121.
  11. Shylesh, S.; Wang, L.; Thiel, W. R. Adv. Synth. Catal. 2010, 352, 425.
  12. Noda, S.; Kochi, T.; Nozaki, K. Organometallics 2009, 28, 656.
  13. Wesselbaum, S.; Stein, T. V.; Klankermayer, J.; Leitner, W. Angew. Chem. Int. Ed. 2012, 51, 7499.
  14. Edelbach, B. L.; Vicic, D. A.; Lachicotte, R. J.; Jones, W. D. Organometallics 1998, 17(22), 4784.
  15. Sadnani, N. D.; Walia, A.; Kapoor, P. N.; Kapoor, R. N. Aust. J. Chem. 1979, 32, 1143.
  16. King, R. B.; Kapoor, P. N. Inorg. Chem. 1972, 11, 1524.
  17. Carty, A. J. Can. J. Chem. 1967, 45, 345.
  18. Bachii, M. Spectrochim. Acta 1972, 28A, 2286.
  19. Hartley, F. R. The Chemistry of Platinum and Palladium; Applied Sciences Publications: London, 1973; p 462.
  20. Evans, I. P.; Spencer, A.; Wilkinson, G. J. Chem. Soc., Dalton 1973, 204.
  21. Nefedo, I.; Yarzhemsky, V. G.; Tarsov, V. P. Chem. Phy. 1976, 18, 417.
  22. Chatt, J.; Hayter, R. G., J. Chem. Soc. London. 1963, 6017.