DOI QR코드

DOI QR Code

CUBIC IDEALS IN SEMIGROUPS

  • Received : 2013.07.17
  • Accepted : 2013.10.08
  • Published : 2013.12.25

Abstract

Operational properties of cubic sets are first investigated. The notion of cubic subsemigroups and cubic left (resp. right) ideals are introduced, and several properties are investigated. Relations between cubic subsemigroups and cubic left (resp. right) ideals are discussed. Characterizations of cubic left (resp. right) ideals are considered, and how the images or inverse images of cubic subsemigroups and cubic left (resp. right) ideals become cubic subsemigroups and cubic left (resp. right) ideals, respectively, are studied.

Keywords

Cubic subsemigroups;cubic left (resp. right) ideal;cubic property;(inverse) cubic transformation

References

  1. M. Aslam, T. Aroob and N. Yaqoob, On cubic ${\Gamma}$-hyperideals in left almost ${\Gamma}$-semihypergroups, Ann. Fuzzy Math. Inform. 5 (2013), 169-182.
  2. K. Iseki, A characterization of regular semigroups, Proc. Japan Acad., 32 (1965), 676-677.
  3. Y. B. Jun, C. S. Kim and M. S. Kang, Cubic subalgebras and ideals of BCK/BCI-algebras, Far East. J. Math. Sci. (FJMS) 44 (2010), 239-250.
  4. Y. B. Jun, C. S. Kim and J. G. Kang, Cubic q-ideals of BCI-algebras, Ann. Fuzzy Math. Inform. 1 (2011), 25-34.
  5. Y. B. Jun, C. S. Kim and K. O. Yang, Cubic sets, Ann. Fuzzy Math. Inform. 4 (2012), 83-98.
  6. Y. B. Jun, K. J. Lee and M. S. Kang, Cubic structures applied to ideals of BCI- algebras, Comput. Math. Appl. 62 (2011), 3334-3342. https://doi.org/10.1016/j.camwa.2011.08.042
  7. Y. B. Jun and K. J. Lee, Closed cubic ideals and cubic -subalgebras in BCK/BCI-algebras, Appl. Math. Sci. 4 (2010), 3395-3402.
  8. L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm and BK-relational products, in: R.B. Kearfort et al. (Eds.), Applications of Interval Computations, Kluwer, Dordrecht, (1996), 291-335.
  9. R. Sambuc, Functions -Flous, Application a l'aide au Diagnostic en Pathologie Thyroidienne, These de Doctorat en Medecine, Marseille, 1975.
  10. I. B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20 (1986), 191-210. https://doi.org/10.1016/0165-0114(86)90077-1
  11. I. B. Turksen, Interval-valued fuzzy sets and compensatory AND, Fuzzy Sets and Systems 51 (1992), 295-307. https://doi.org/10.1016/0165-0114(92)90020-5
  12. I. B. Turksen, Interval-valued strict preference with Zadeh triples, Fuzzy Sets and Systems 78 (1996) 183-195. https://doi.org/10.1016/0165-0114(95)00167-0
  13. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  14. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8 (1975), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. Cubic Interval-Valued Intuitionistic Fuzzy Sets and Their Application in BCK/BCI-Algebras vol.7, pp.1, 2018, https://doi.org/10.3390/axioms7010007
  2. MAPPINGS OF CUBIC SETS vol.31, pp.3, 2016, https://doi.org/10.4134/CKMS.c150148
  3. Characterizations of hemirings in terms of cubic $$h$$ h -ideals vol.19, pp.8, 2015, https://doi.org/10.1007/s00500-014-1396-4
  4. -algebras vol.10, pp.04, 2018, https://doi.org/10.1142/S1793830918500490
  5. Cubic Intuitionistic q-Ideals of BCI-Algebras vol.10, pp.12, 2018, https://doi.org/10.3390/sym10120752
  6. Research on Novel Correlation Coefficient of Neutrosophic Cubic Sets and Its Applications vol.2019, pp.1563-5147, 2019, https://doi.org/10.1155/2019/7453025