DOI QR코드

DOI QR Code

Combustion and Spray Characteristics of Jet in Crossflow in High-Velocity and High-Temperature Crossflow Conditions

고온고속기류 중에 수직 분사되는 액체제트의 연소 및 분무특성

  • Yoon, Hyun Jin (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Ku, Kun Woo (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kim, Jun Hee (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Hong, Jung Goo (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Park, Cheol Woo (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Lee, Choong Won (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • Received : 2012.05.15
  • Accepted : 2012.07.18
  • Published : 2013.01.01

Abstract

A jet in a crossflow (JICF) has been extensively studied because of its wide applications in technological systems, including fuel injection into a ram-combustor. However, in the case of insufficient mixing performance of the liquid jet into the crossflow, the flame in a ram-combustor is unstable. In this study, the nonuniform flame and combustion instabilities due to lack of mixing performance were experimentally investigated. By performing correlations to predict the penetration height and break-up point, the spray and mixing characteristics of JICF have been studied. In particular, the improved correlations of penetration height are proposed in two distinctive domains depending on the X/d location of the crossflow.

주류공기에 수직으로 분사되는 JICF 분사시스템은 연소실내에서 주류공기의 영향을 최소화하면서 미립화 및 연소성능을 향상시키기 위한 추진시스템의 연료분사 방식으로 넓은 적용범위를 가지고 있다. 하지만 JICF 분사시스템에서 산화제인 공기와 연료의 불충분한 혼합성능은 연소실 내에서의 불균일한 화염구조를 형성한다. 따라서 본 연구에서는 JICF 분사시스템의 램제트 연소기에서 연료와 공기의 부족한 혼합성능에 기인한 연소의 불균일한 화염구조를 실험적으로 확인하고, 연료 제트의 침투깊이, 분열점 등을 예측하기 위한 상관관계식을 유도함으로서 JICF 분사시스템에서 연소성능에 영향을 미치는 액체제트와 주류공기와의 분무 및 혼합특성을 파악하였다. 특히, 액체 제트의 침투깊이를 주류공기의 유동방향의 상류와 하류로 나누어 상관관계식을 유도하여 좀더 정확한 침투깊이의 예측이 가능하도록 하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Curran, E. T., 2001, "Scramjet Engines: The First Forty years," Journal of Propulsion and Power, Vol. 17, No. 6, pp. 1138-1148. https://doi.org/10.2514/2.5875
  2. Jones, R., 1981, "Firebird Ramjet Propulsion System Development," 8th JANNAF Combustion Meeting, Vol. 3.
  3. Lefevre, A. H., 1983, Gas-Turbine Combustion. Hemisphere Publishing Corporation.
  4. Karagozian, A. R., 2010, "Transverse Jets and Their Control," Progress in Energy and Combustion Science, Vol. 36, No. 5, pp. 531-553. https://doi.org/10.1016/j.pecs.2010.01.001
  5. Abbitt, J. S., Segal, C., McDaniel, J. C., Krauss, R. H. and Whitehurst, R. B., 1993, "Experimental Supersonic Hydrogen Combustion Employing Staged Injection Behind a Rearward-Facing Step," Journal of Propulsion and Power, Vol. 9, pp. 472-478. https://doi.org/10.2514/3.23646
  6. Wang, K. S. C., Smith, O. I. and Karagozian A. R., 1995, "In-Flight Imaging of Gas Jets Injected into Subsonic and Supersonic Crossflows," AIAA Journal, Vol. 33, No. 12, pp. 2259-2263. https://doi.org/10.2514/3.12977
  7. Lee, C. W., Moon, S. Y., Sohn C. H. and Youn, H. J., 2003, "Spray and Combustion Characteristics of A Dump-Type Ramjet Combustor," KSME Int'l Journal, Vol. 17, No. 12, pp. 2019-2026. https://doi.org/10.1007/BF02982442
  8. Waltrup, P. J., 1987, "Liquid-Fueled Supersonic Combustion Ramjets: A Research Perspective," Journal of Propulsion and Power, Vol. 3, pp. 515-524. https://doi.org/10.2514/3.23019
  9. AGARD, 1994, AGARD(Advisory Group for Aerospace research & Development) Advisory Report 323, pp. 51.
  10. Mattingly, J. D., 1987, Aircraft Engine Design, AIAA Education Series, pp. 324-327.
  11. Oates, G. C., 1978, The Aerothermodynamics of Aircraft Gas Turbine Engine, AFAPL-TR-78.
  12. Yoon, H. J., Hong, J. G., Park, C. W. and Lee, C. W., 2012, "Spray Characteristics of Single and Double Liquid Jets in Crossflow," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 5, pp. 495-501. https://doi.org/10.3795/KSME-B.2012.36.5.495
  13. Yoon, H. J., Hong, J. G. and Lee, C. W., 2011, "Correlations For Penetration Height of Single and Double Liquid Jets in Cross Flow Under High- Temperature Conditions," Atomization and Sprays, Vol. 21, No. 8, pp. 673-686. https://doi.org/10.1615/AtomizSpr.2012004212
  14. No, S. Y., 2011, "Empirical Correlations for Penetration Height of Liquid Jet in Cross Flow-A Review," ILASS-Europe.
  15. Iyogun, C. O., Birouk, M. and Popplewell, N., 2006, "Trajectory of Water Jet Exposed to Low Subsonic Cross-Flow," Atomization and Sprays, Vol. 16, pp. 963-979. https://doi.org/10.1615/AtomizSpr.v16.i8.70
  16. Birouk, M., Iyogun, C. O. and Popplewell, N., 2007, "Role of Viscosity on Trajectory of Liquid Jets in a Cross-airflow," Atomization and Sprays, Vol. 17, pp. 267-287. https://doi.org/10.1615/AtomizSpr.v17.i3.30
  17. Wu, P. K., Kirkendall, K. A., Fuller, R. P. and Nejad, A. S., 1998, "Spray Structures of Liquid Jets Atomized in Subsonic Crossflows," Journal of Propulsion and Power, Vol. 14, No. 2, pp. 173-182. https://doi.org/10.2514/2.5283