DOI QR코드

DOI QR Code

t-SPLITTING SETS S OF AN INTEGRAL DOMAIN D SUCH THAT DS IS A FACTORIAL DOMAIN

  • Received : 2013.10.10
  • Accepted : 2013.12.03
  • Published : 2013.12.30

Abstract

Let D be an integral domain, S be a saturated multi-plicative subset of D such that $D_S$ is a factorial domain, $\{X_{\alpha}\}$ be a nonempty set of indeterminates, and $D[\{X_{\alpha}\}]$ be the polynomial ring over D. We show that S is a splitting (resp., almost splitting, t-splitting) set in D if and only if every nonzero prime t-ideal of D disjoint from S is principal (resp., contains a primary element, is t-invertible). We use this result to show that $D{\backslash}\{0\}$ is a splitting (resp., almost splitting, t-splitting) set in $D[\{X_{\alpha}\}]$ if and only if D is a GCD-domain (resp., UMT-domain with $Cl(D[\{X_{\alpha}\}]$ torsion UMT-domain).

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. D.D. Anderson, D.F. Anderson, and M. Zafrullah, Atomic domains in which almost all atoms are prime, Comm. Algebra 20 (1992), 1447-1462. https://doi.org/10.1080/00927879208824413
  2. D.D. Anderson, D.F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), 17-37. https://doi.org/10.1016/0022-4049(91)90046-5
  3. D.D. Anderson, D.F. Anderson, and M. Zafrullah, The ring D + $XD_S$[X] and t-splitting sets, Commutative Algebra Arab. J. Sci. Eng. Sect. C Theme Issues 26 (1) (2001), 3-16.
  4. D.D. Anderson, T. Dumitrescu, and M. Zafrullah, Almost splitting sets and AGCD domains, Comm. Algebra 32 (2004), 147-158. https://doi.org/10.1081/AGB-120027857
  5. D.F. Anderson and G.W. Chang, Almost splitting sets in integral domains, II, J. Pure Appl. Algebra 208 (2007), 351-359. https://doi.org/10.1016/j.jpaa.2006.01.006
  6. A. Bouvier and M. Zafrullah, On some class groups of an integral domain, Bull. Soc. Math. Grece (N.S.) 29 (1988), 45-59.
  7. G.W. Chang, Almost splitting sets in integral domains, J. Pure Appl. Algebra 197 (2005), 279-292. https://doi.org/10.1016/j.jpaa.2004.08.035
  8. G.W. Chang, Almost splitting sets S of an integral domain D such that $D_S$ is a PID, Korean J. Math. 19 (2011), 163-169. https://doi.org/10.11568/kjm.2011.19.2.163
  9. G.W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004), 71-86. https://doi.org/10.1016/j.jpaa.2003.07.001
  10. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
  11. M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prufer integral closure, Comm. Algebra 26 (1998), 1017-1039. https://doi.org/10.1080/00927879808826181
  12. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  13. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955-1969. https://doi.org/10.1080/00927878908823829
  14. B.G. Kang, Prufer v-multiplication domains and the ring $R[X]_{Nv}$, J. Algebra 123 (1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  15. M. Zafrullah, A general theory of almost factoriality, Manuscripta Math. 51 (1985), 29-62. https://doi.org/10.1007/BF01168346