DOI QR코드

DOI QR Code

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW

Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제

  • Kim, Yong-Ki (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Choi, Eun-Jung (Climate Change and Agroecology, NAAS, RDA) ;
  • Hong, Sung-Jun (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Shim, Chang-Ki (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Kim, Min-Jeong (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Jee, Hyeong-Jin (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Park, Jong-Ho (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Han, Eun-Jung (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Jang, Bo-Kyung (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA) ;
  • Yun, Jong-Cheul (Organic Agriculture Division, National Academy of Agricultural Science (NAAS), RDA)
  • 김용기 (국립농업과학원 유기농업과) ;
  • 최은정 (국립농업과학원 기후변화생태과) ;
  • 홍성준 (국립농업과학원 유기농업과) ;
  • 심창기 (국립농업과학원 유기농업과) ;
  • 김민정 (국립농업과학원 유기농업과) ;
  • 지형진 (국립농업과학원 유기농업과) ;
  • 박종호 (국립농업과학원 유기농업과) ;
  • 한은정 (국립농업과학원 유기농업과) ;
  • 장보경 (국립농업과학원 유기농업과) ;
  • 윤종철 (국립농업과학원 유기농업과)
  • Received : 2013.09.09
  • Accepted : 2013.11.01
  • Published : 2013.12.31

Abstract

In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.

References

  1. Abdel-Kader, M. M., N. S. El-Mougy, M. D. E. Aly, S. M. Lashin and F. Abdel-Kareem (2012) Greenhouse biological approach for controlling foliar diseases of some vegetables. Advances in Life Sciences 2(4):98-103. https://doi.org/10.5923/j.als.20120204.03
  2. Akhtar, M. S. and Z. A. Siddiqui (2007) Biocontrol of a chickpea root-rot disease complex with Glomus intraradices, Pseudomonas putida and Paenibacillus polymyxa. Australasian Plant Pathology 36:175-180. https://doi.org/10.1071/AP07006
  3. Algam, S. A. E., G. Xie, B. Li, S. Yu and J. Larsen (2010) Effect of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. Journal of Plant Pathology 92(3):593-600.
  4. Annapurna, K., D. Ramadoss, L. Vithal, P. Bose and Sajad (2011) PGPR bio-inoculants for ameliorating biotic and abiotic stresses in crop production. Proceedings of the 2nd Asian PGPR conference. August 21-24, 2011, Beijing, P. R. China. pp. 67-72.
  5. Berger, F., H. Li, D. Qhite, R. Frazer and C. Leifert. 1996. Effect of pathogen inoculum, antagonist density and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis cot1 in high-humidity fogging glass houses. Phytopathology 86:428-433. https://doi.org/10.1094/Phyto-86-428
  6. Cawoy, H., W. Bettiol, P. Fikers and M. Ongena (2011) Bacillus-based biological control of plant diseases, in Pesticides in the world-pesticides use and management (www.intechopen.com).
  7. Cho, K. M., S. Y. Hong, S. M. Lee, Y. H. Kim, G. G. Kahng, H. Kim and H. D. Yun (2006) A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multiglycosyl hydrolases in two catalytic domains. Applied Microbiology and Biotechnology 73:618-630. https://doi.org/10.1007/s00253-006-0523-2
  8. Dijiksterhuis, J., M. Sanders, L. G. M. Gorris and E. J. Smid (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. Journal of Applied Microbiology 86:13-21. https://doi.org/10.1046/j.1365-2672.1999.t01-1-00600.x
  9. Frag, M. A., H. B. Park, S. H. Lee, J. W. Kloepper and C. M. Ryu (2011) Induced systemic resistance against Pseudomonas syringae pv. maculicola by a long chain bacterial volatile emitted from Paenibacillus polymyxa in Arabidopsis thaliana. Proceedings of the 2nd Asian PGPR conference. August 21-24, 2011, Beijing, P. R. China. pp. 330-336.
  10. Freitas, J. R. M. R. Banerjee and J. J. Germida (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphate uptake of canola (Brassica narus L.). Biology and Fertility of Soils 24:358-364. https://doi.org/10.1007/s003740050258
  11. Gouzou, L., G. Burtin, R. Philippy, F. Bartoli and T. Heulin (1993) Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56(1):479-491. https://doi.org/10.1016/0016-7061(93)90128-8
  12. Han, Y. W. (1989) Levan production by Bacillus polymyxa. Journal of Industrial Microbiology 4:447-452. https://doi.org/10.1007/BF01569641
  13. Helbig, J. (2001) Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (Isolate 18191). Phytopathology 149:265-273. https://doi.org/10.1046/j.1439-0434.2001.00609.x
  14. Ito, M and Y. Koyama (1972) Jolipetin, A new peptide antibiotic : II. The mode of action of jolipeptin. Journal of Antibiotics 25(5):309-314. https://doi.org/10.7164/antibiotics.25.309
  15. Jung, J., K. O. Yu, Y. I. Kim and S. O. Han (2011) Evaluation of chitinolytic activity of chitinase (Chi45) from Paenibacillus polymyxa, suitable for microbial biological agents. 2011 The Korean Society for Biotechnology and Bioengineering (Abstract).
  16. Kanimozhi, K. and A. Panneerselvam (2010) Studies on isolation and nitrogen fixation ability of Azospirillium spp. isolated from Thanjavur district. Der Chemica Sinica 1(3): 138-145.
  17. Karpunina, L. V., U. Y. Mel'nikova and S. A. Konnova (2003) Biological role of lectins from the notrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plantroot interactions. Current Microbiology 47:376-378. https://doi.org/10.1007/s00284-002-3987-z
  18. Kharbanda, P. and J. Yang (2011) Paenibacillus polymyxa strain PKPB1: a PGPR and an impressive bio-fungicide candidate. Proceedings of the 2nd Asian PGPR conference. August 21-24, 2011, Beijing, P. R. China. p. 102.
  19. Kim, S. G, Y. Jang, H. Y. Kim, Y. J. Koh and Y. H. Kim (2010) Comparison of microbial fungicides in antagonistic activities related to the biological control of Phytophthora blight in chili pepper caused by Phytophthora capsici. Plant Pathology Journal 26(5):340-345. https://doi.org/10.5423/PPJ.2010.26.4.340
  20. Kim, Y. K., S. J. Hong, C. K. Shim, M. J. Kim, E. J. Choi, M. H. Lee, J. H. Park. E. J. Han, N. H. An and H. J. Jee (2012) Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Research in Plant Disease 18(3): 201-209. https://doi.org/10.5423/RPD.2012.18.3.201
  21. Kumar, A., A. Prakash and B. N. Johri (2011) Bacillus as PGPR in crop ecosystem: in Bacteria in Agrobiology: Crop Ecosystems. Doi 10.1007/978-3-642-18357-2, Springer-Verlag Berlin Heidelberg.
  22. Lebuhn, M., T. Heulin and A. Hartmann (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiology Ecology 22: 325-334. https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  23. Lee, B., M. A. Farag, H. B. Park, J. W. Kloepper, S. H. Lee and C. M. Ryu (2012) Induced resistance by a long-chain bacterial volatile: Elicitation of plant systemic defense by a C13 volatile produced Paenibacillus polymyxa. PloS ONE 7(11): e48744. doi: 10.1371/journal.pone.0048744. https://doi.org/10.1371/journal.pone.0048744
  24. Li, B., S. Ravnskov, G. Xie and J. Larsen (2007) Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhizaassociated bacteria from the genus Paenibacillus. BioControl 52:863-875. https://doi.org/10.1007/s10526-007-9076-2
  25. Li, B., T. Su, R. Yu, Z. Tao, Z. Wu, S. A. E. Algam, G. Xie, Y. Wang and G. Sun (2010) Inhibitory activity of Paenibacillus marcerans and Paenibacillus polymyxa against Ralstonia solanacerum. African Journal of Microbiology Research 4(19):2048-2054.
  26. Matta, H. and V. Punj (1998) Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. International Journal of Food Microbiology 42(3):139-145. https://doi.org/10.1016/S0168-1605(98)00061-0
  27. Milagres, A. M. F., A. Machuca and D. Napoleao. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods 37:1-6.
  28. Nielsen, P. and J. Sorensen (1997) Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEAMS Microbiology Ecology 22: 183-192. https://doi.org/10.1111/j.1574-6941.1997.tb00370.x
  29. Pichard, B., J. P. Larue and D. Thouvenot (1995) Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology letters 133(3):216-218.
  30. Piuri, M., C. Sanchez-Rivas and S. M. Ruzal (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Letters in Applied Microbiology 27:9-13. https://doi.org/10.1046/j.1472-765X.1998.00374.x
  31. Raza, W. and Q. Shen (2010) Growth, $Fe3^+$ reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron condition. Current Microbiology 6:390-395.
  32. Raza, W., W. Yang and Q. R. Shen (2008) Paenibacillus polymyxa: Antibiotics, hydrolytic enzymes and hazard assessment. Journal of Plant Pathology 90(3):419-430.
  33. Raza, W., X. Yang, H. Wu, Y. Wang, Y. Xu, and Q. Shen (2009) Isolation and characterization of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f. sp. nevium. European Journal of Plant Pathology 125:471-483. https://doi.org/10.1007/s10658-009-9496-1
  34. Ryu, C. M., J. Kim, O. Choi, S. H. Kim and C. S. Park (2006) Improvement of biological capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control 39:282-289. https://doi.org/10.1016/j.biocontrol.2006.04.014
  35. Schwyn, B. and J. B. Neilands (1997) Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160:46-56.
  36. Seldin, L., J. D. van Elsas and E. G. C. Penido (1983) Bacillus nitrogen fixers from brazillian soils. Plant and Soil 70:243-255. https://doi.org/10.1007/BF02374784
  37. Shunhua, S. W. Ping, X. Baotian and G. Guoyi (2011) Inhibitory effects and control efficacy of Paenibacillus polymyxa WY110 on Fusarium oxysporum of watermelon. Proceedings of the 2nd Asian PGPR conference. August 21-24, 2011, Beijing, P. R. China. p. 393.
  38. Singh, H. P. and T. A. Singh (1993) The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate-solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4: 37-43. https://doi.org/10.1007/BF00203249
  39. Timmusk, S. (2003) Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Acta Unversitatis Upsaliensis. Comprehensive summaries of Uppsala Dissertations from the Faculty of Science and Technology 908. 40pp. Uppsala, Sweden.
  40. Timmusk, S. and E. G. H. Wagner (1999a) The plant-growthpromoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis haliana gene expression: A possible connection between biotic and abiotic stress responses. MPMI 12(11):951-959. https://doi.org/10.1094/MPMI.1999.12.11.951
  41. Timmusk, S., B. Nicander, U. Granhall and E. Tillberg (1999b) Cytokinin production by Paenibacillis polymyxa. Soil Biology and Biochemistry 31(13):1847-1852. https://doi.org/10.1016/S0038-0717(99)00113-3
  42. Uozumi, N., K. Sakurai, T. Sasaki, S. Takekawa, H. Yamagata, N. Tsukagoshi and S. Udaka (1989) A single gene directs synthesis of a precursor protein with a- and a-amylase activities in Bacillus polymyxa. Journal of Bacteriology 171(1):375-382.
  43. Wu, B., Y. Ding, L. Yao, K. Liu and B. Du (2011) Diseasepreventing and growth-promoting effects of antifungal bacteria against Phytophthora nicotianae on tobacco. Proceedings of the 2nd Asian PGPR conference. August 21-24, 2011, Beijing, P. R. China. pp. 501-502.
  44. Yang, J., P. D. Kharbanda and M. Mirza (2004) Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of Pythium disease of cucumber in hydroponic system. Acta Horticulturae 635:59-66.
  45. Zaidi, S., S. Usmani, B. R. Singh and J. Musarrat (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057
  46. Zhang, S., W. Raza, X. Yang, J. Hu, Q. Huang, Y. Xu, X. Liu, W. Ran and Q. Shen (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biology and Fertility of Soils 44:1073-1080. https://doi.org/10.1007/s00374-008-0296-0

Cited by

  1. Yasumatsu (Hymenoptera: Cynipidae) vol.31, pp.3, 2017, https://doi.org/10.1080/13102818.2017.1294035
  2. Toxicity of Pesticides to Mycophagous Ladybrid, Illeis koebelei Timberlake (Coleoptera: Coccinellidae: Halyziini) vol.21, pp.4, 2017, https://doi.org/10.7585/kjps.2017.21.4.364