Cultural Characteristics and Mechanism of Bacillus amyloliquefacien subsp. plantarum CC110 for Biological Control of Cucumber Downy Mildew

Bacillus amyloliquefaciens subsp. plantarum CC110균주의 오이 노균병 발생 억제기작 및 배양적 특성

  • Lee, Sang Yeob (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Weon, Hang Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Kim, Jeong Jun (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Han, Ji Hee (Agricultural Microbiology Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
  • 이상엽 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 원항연 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 김정준 (농촌진흥청 국립농업과학원 농업미생물과) ;
  • 한지희 (농촌진흥청 국립농업과학원 농업미생물과)
  • Received : 2013.11.11
  • Accepted : 2013.12.13
  • Published : 2013.12.31


An isolate of Bacillus amyloliquefaciens subsp. plantarum CC110 was selected as an effective antagonist for biological control of cucumber downy mildew caused by Pseudoperonospora cubensis. Temperature range for growth of CC110 isolate was $7.5{\sim}55.0^{\circ}C$, and its optimal temperature at $36.6^{\circ}C$. pH range for growth of CC110 isolate was 4.5~9.5, and its optimal pH at 7.0. In this study, the most effective sources of carbon and nitrogen for growth of CC110 isolate were fructose and yeast extract, respectively. The volatile of CC110 isolate was found to be effective to control downy mildew on cucumber showing no diseased area whereas that of control was 13.2% using the I plate bioassay. The culture broth and cells of isolate CC110 cultured in TSB media for 48 hours at $28^{\circ}C$ inhibited occurrence of cucumber downy mildew. The cells and culture broth were transformed into sporangia of P. cubensis by in observation under light microscope and scanning electron microscope.


Supported by : 국립농업과학원


  1. Borriss, R. (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents, In Bacteria in agrobiology: plant growth response. Maheshwari D. K, Eds; Springer Heidelberg, Germany, pp. 41-76.
  2. Borriss, R., X.H. Chen, C. Rückert, J. Blom, A. Becker, B. Baumgarth, B. Fan, R. Pukall, P. Schumann, C. Sproer, H. Junge and J. Vater (2011) Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61:1786-1801.
  3. Chen, H., X. Xiang, J. Wang. Wu, Z. Zheng and Z. Yu (2008) Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters 30(5): 919-923.
  4. Copping, L. G. (2004) The manual of biocontrol agents. 3th edition, BCPC. UK. pp. 702.
  5. Elizabeth, A. S., L. G. Leah, M. Q. Lina, V. Marina, K. H.Maryand and D. Brad (2011) The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Molecular Plant pathology. 12(3):217-226.
  6. Islam, M. T. and M. M. Hossain (2013) Biological control of Peronospormycete phytopathogen by bacterial antagonist. In Bacteria in agrobiology : disease management. D. K. Maheshwari, Eds; Springer-verlag Berlin Heidelberg, pp. 167-218.
  7. Kai, M., U. Effmert and G. Berg (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia Solani. Arch Microbiol 187:351-360.
  8. Lebeda, A. and Y. Cohen (2011) Cucurbit downy mildew (Pseudoperonospora cubensis)-biology, ecology, epidemiology, host-pathogen interaction and control. Eur. J. Plant Pathol. 129:157-192.
  9. Lebeda, A. and Y. Cohen (2012) Fungicide resistance in Pseudoperonospora cubensis, the causal pathogen of cucurbit downy mildew. In Fungicide Resistance in Crop Protection: Risk and Management, Thind TS, Eds; CABI: Wallingford, UK, pp. 44-63.
  10. Lee, S. Y., B. Y. Kim, Ahn, J. H. Song, J. Y.J Seol,. W. G. Kim and H. Y. Weon (2012) Draft Genome Sequence of the Biocontrol Bacterium Bacillus amyloliquefaciens Strain M27. J. of Bacteriology. 194:6934-6935.
  11. National Institute of Agricultural Science and Technology (1997) Compendium of vegetable diseases with color plates. Eds; Sammi press. Seoul, pp. 448.
  12. Sadoma, M. T., , A. B. B. El-Sayed and S. M. El-Moghazy (2011) Biological control of downy mildew disease of maize caused by Peronospora sorghi using certain biocontrol agents alone or in combination. J. Agryc. Res. Kafer El-Sheikh Univ., 37(1):1-11.
  13. Shlomo, B., S. Abraham and Y. Oded (2001) Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology. 91(10):1062-1068.
  14. Stuart, P. F., C. P. Roger, M. G. David, C. S. Robert and S. Abraham (1996) Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology. 86(10):1010-1017.
  15. The Korean Society of Plant Pathology (2009) List of Plant Diseases in Korea, 5th edition, Eds; JY press, Anyang, Korea. pp. 853.
  16. Tzeng, Y. M., Y. K. Rao, Y. K. and K. J. Tsay (2008) Effect of cultivation conditions on spore production from Bacillus amyloliquefaciens B128 and its antagonism to Botrytis elliptica. J. Applied Microbiology 104(5), pp.1275-1282.
  17. Umesha, S., , S. M. Dharmesh S. A. Shetty, M. Krishnappa and H. S. Shetty (1998) Biocontrol of downy mildew disease of pearl millet using Pseudomonas fluorescens. Crop Protection. 17(5):387-392.
  18. Urban, J. and A. Lebeda (2006) Fungicide resistance in cucurbit downy mildew-methodogical and population aspects. Ann. Appl. Biol. 149:63-75.
  19. Yuan, J., W. Raza, Q. Shen and Q. Huang (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78(16):5942-5944.

Cited by

  1. Antagonistic Activities of Bacillus spp. Strains Isolated from Tidal Flat Sediment Towards Anthracnose Pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea vol.31, pp.2, 2015,
  2. Biological Control of White Stain Symptom on Grape Fruit by Bacillus velezensis MWS28 vol.22, pp.4, 2018,