Effect of Electrode Degradation on the Membrane Degradation in PEMFC

PEMFC에서 전극 열화가 전해질 막 열화에 미치는 영향

  • Song, Jinhoon (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Saehoon (HMC Eco Technology Research Institute) ;
  • Ahn, Byungki (HMC Eco Technology Research Institute) ;
  • Ko, Jaijoon (HMC Eco Technology Research Institute) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • 송진훈 (순천대학교 화학공학과) ;
  • 김세훈 (현대자동차 환경기술연구소) ;
  • 안병기 (현대자동차 환경기술연구소) ;
  • 고재준 (현대자동차 환경기술연구소) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2012.09.22
  • Accepted : 2012.10.16
  • Published : 2013.02.01


Until a recent day, degradation of PEMFC MEA (membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. The effect of electrode degradation on membrane degradation was studied in this work. We compared membrane degradation after electrode degradation and membrane degradation without electrode degradation. I-V performance, hydrogen crossover current, fluoride emission rate (FER), impedance and TEM were measured after and before degradation of MEA. Electrode degradation reduced active area of Pt catalyst, and then radical/$H_2O_2$ evolution rate decreased on Pt. Decrease of radical/$H_2O_2$ reduced the velocity of membrane degradation.


Supported by : 지식경제부


  1. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005).
  2. Perry, M. L. and Fuller, T. F., "A Historical Perspective of Fuel Cell Technology in the 20th Century," J. Electrochem. Soc, 149(7), S59-S67(2002).
  3. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger, A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S., "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc. 140, 2872-2877(1993).
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004).
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrog. Energy, 31, 1838-1854(2006).
  7. Pozio, A., Silva R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003).
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113(2005).
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance And Life," J. Power Sources, 131, 41-48(2004).
  10. Watanabe, M., Tsurumi, K., Mizukami,T., Nakamura, T. and Stonehart, P., "Activity and Stability of Ordered and Disordered Co-Pt Alloys for Phosphoric Acid Fuel Cells," J. Electrochem. Soc., 141, 2659-2668(1994).
  11. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membraneelectrode- Assembly," J. Power Sources, 159, 461-467(2006).
  12. Zhai, Y., Zhang, H., Xing, D. and Shao, Z., "The Stability of Pt/ C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test," J. Power Sources, 164, 126-133(2006).
  13. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011).
  14. Kim, T. H., Lee, J. H., Lim, T. W. and Park, K. P., "Degradation of Polymer Electrolyte Membrane under OCV/Low Humidity Conditions," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 45, 345-350(2007).

Cited by

  1. Effect of Membrane Degradation on the Electrode Degradation in PEMFC vol.51, pp.3, 2013,
  2. Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery vol.51, pp.6, 2013,
  3. Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA vol.52, pp.2, 2014,
  4. Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC vol.52, pp.4, 2014,
  5. Performance and Durability of PEMFC MEAs Fabricated by Various Methods vol.52, pp.5, 2014,
  6. Degradation of Electrode and Membrane in Proton Exchange Membrane Fuel Cell After Water Electrolysis vol.52, pp.6, 2014,
  7. Decrease in hydrogen crossover through membrane of polymer electrolyte membrane fuel cells at the initial stages of an acceleration stress test pp.1975-7220, 2018,