DOI QR코드

DOI QR Code

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

Zeng, Yuedi;Chen, Jianlong

  • Received : 2010.08.01
  • Published : 2013.01.31

Abstract

Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

Keywords

(m, n)-coherent ring;(m, n)-injective module;(m, n)-flat module;(pre)cover;(pre)envelope

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categries of Modules, Second edition, Springer-Verlag, Berlin, 1974.
  2. T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175-177. https://doi.org/10.1090/S0002-9939-1981-0593450-2
  3. J. L. Chen and N. Q. Ding, The weak global dimension of commutative coherent rings, Comm. Algebra 21 (1993), no. 10, 3521-3528. https://doi.org/10.1080/00927879308824746
  4. J. L. Chen, N. Q. Ding, Y. L. Li, and Y. Q. Zhou, On (m, n)-injectivity of modules, Comm. Algebra 29 (2001), no. 12, 5589-5603. https://doi.org/10.1081/AGB-100107948
  5. R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239-252. https://doi.org/10.1016/0021-8693(75)90049-6
  6. N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470. https://doi.org/10.1080/00927879608825646
  7. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. https://doi.org/10.1007/BF02760849
  8. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Exp. Math., vol 30, de Gruyter Berlin, 2000.
  9. L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Math. Surveys and Monographs. Vol. 84. Providence, Amer. Math. Society, 2001.
  10. R. Gobel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, GEM 41. Berlin-New York, Walter de Gruyter, 2006.
  11. H. Holm and P. Jorgensen, Covers, precovers and purity, Illinois J. Math. 52 (2008), no. 2, 691-703.
  12. L. X. Mao and N. Q. Ding, On relative injective modules and relative coherent rings, Comm. Algebra 34 (2006), no. 7, 2531-2545. https://doi.org/10.1080/00927870600651208
  13. L. X. Mao and N. Q. Ding, On divisible and torsionfree modules, Comm. Algebra 36 (2008), no. 2, 708-731. https://doi.org/10.1080/00927870701724201
  14. W. K. Nicholson and E. Sanchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra 271 (2004), no. 1, 391-406. https://doi.org/10.1016/j.jalgebra.2002.10.001
  15. A. Shamsuddin, n-injective and n-flat modules, Comm. Algebra 29 (2001), no. 5, 2039-2050. https://doi.org/10.1081/AGB-100002166
  16. J. Xu, Flat Covers of Modules, Lecture Notes in Math. 1634. Berlin-Heidelberg-New York, Springer-Verlag, 1996.
  17. X. X. Zhang and J. L. Chen, On (m, n)-injective modules and (m, n)-coherent rings, Algebra Colloq. 12 (2005), no. 1, 149-160. https://doi.org/10.1142/S1005386705000143
  18. H. Y. Zhu and N. Q. Ding, Generalized morphic rings and their applications, Comm. Algebra 35 (2007), no. 9, 2820-2837. https://doi.org/10.1080/00927870701354017
  19. Z. Zhu, J. L. Chen, and X. X. Zhang, On (m, n)-purity of modules, East-West J. Math. 5 (2003), no. 1, 35-44.

Cited by

  1. -coherent rings vol.46, pp.11, 2018, https://doi.org/10.1080/00927872.2018.1459648