• Wang, Jian ;
  • Su, Meng-Long ;
  • Fang, Zhong-Bo
  • Received : 2010.11.26
  • Published : 2013.01.31


This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system $$\{u_t=(\mid(u^{m_1})_x{\mid}^{{p_1}^{-1}}(u^{m_1})_x)_x+u^{l_{11}}{{\int_0}^a}v^{l_{12}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T),\\{v_t=(\mid(v^{m_2})_x{\mid}^{{p_2}^{-1}}(v^{m_2})_x)_x+v^{l_{22}}{{\int_0}^a}u^{l_{21}}({\xi},t)d{\xi},\;(x,t)\;in\;[0,a]{\times}(0,T)}$$ with nonlinear boundary conditions $u_x{\mid}{_{x=0}}=0$, $u_x{\mid}{_{x=a}}=u^{q_{11}}u^{q_{12}}{\mid}{_{x=a}}$, $v_x{\mid}{_{x=0}}=0$, $v_x|{_{x=a}}=u^{q21}v^{q22}|{_{x=a}}$ and the initial data ($u_0$, $v_0$), where $m_1$, $m_2{\geq}1$, $p_1$, $p_2$ > 1, $l_{11}$, $l_{12}$, $l_{21}$, $l_{22}$, $q_{11}$, $q_{12}$, $q_{21}$, $q_{22}$ > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.


nonlinear boundary value problem;nonlinear memory;polytropic filtration system;global existence;blow-up


  1. G. Acosta and J. D. Rossi, Blow-up vs. global existence for quasilinear parabolic systems with a nonlinear boundary condition, Z. Angew. Math. Phys. 48 (1997), no. 5, 711-724.
  2. H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), no. 3, 311-341.
  3. J. R. Anderson, Stability and instability for solutions of the convective porous medium equation with a nonlinear forcing at the boundary. I. II, J. Differential Equations 104 (1993), no. 2, 361-408.
  4. F. Andreu, J. M. Mazon, J. Toledo, and J. D. Rossi, Porous medium equation with absorption and a nonlinear boundary condition, Nonlinear Anal. 49 (2002), no. 4, 541-563.
  5. D. G. Aronson, The porous medium equation, Nonlinear diffusion problems (Montecatini Terme, 1985), 146, Lecture Notes in Math., 1224, Springer, Berlin, 1986.
  6. R. S. Cantrell and C. Cosner, Diffusive logistic equations with indefinite weights: population models in disrupted environments. II, SIAM J. Math. Anal. 22 (1991), no. 4, 1043-1064.
  7. Y. Chen, Semilinear blow-up in nonlocal reaction-diffusion systems with nonlinear memory, Nanjing Daxue Xuebao Shuxue Bannian Kan 23 (2006), no. 1, 121-128.
  8. L. Du, Blow-up for a degenerate reaction-diffusion system with nonlinear nonlocal sources, J. Comput. Appl. Math. 202 (2007), no. 2, 237-247.
  9. J. Filo, Diffusivity versus absorption through the boundary, J. Differential Equations 99 (1992), no. 2, 281-305.
  10. J. Furter and M. Crinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65-80.
  11. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and quasilinear equations of parabolic type, Translations of Mathematics Monographs, Amer. Math. Soc., Providence, RI, 1968.
  12. A. V. Lair and M. E. Oxley, A necessary and sufficient condition for global existence for a degenerate parabolic boundary value problem, J. Math. Anal. Appl. 221 (1998), no. 1, 338-348.
  13. F. Li, Global existence and blow-up of solutions to a nonlocal quasilinear degenerate parabolic system, Nonlinear Anal. 67 (2007), no. 5, 1387-1402.
  14. H. H. Lu and M. X. Wang, Global solutions and blow-up problems for a nonlinear degenerate parabolic system coupled via nonlocal sources, J. Math. Anal. Appl. 333 (2007), no. 2, 984-1007.
  15. M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, 1937.
  16. M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations 103 (1993), no. 1, 146-178.
  17. J. Wang and W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms, J. Math. Anal. Appl. 331 (2007), no. 1, 481-498.
  18. M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 24 (1993), no. 6, 1515-1521.
  19. S. Wang, Doubly nonlinear degenerate parabolic systems with coupled nonlinear boundary conditions, J. Differential Equations 182 (2002), no. 2, 431-469.
  20. X. Wu and W. Gao, Global existence and blow-up of solutions to an evolution p-Laplace system coupled via nonlocal sources, J. Math. Anal. Appl. 358 (2009), no. 2, 229-237.
  21. Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001.
  22. S. N. Zheng and H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, Appl. Math. Comput. 180 (2006), no. 1, 295-308.
  23. J. Zhou and C. Mu, Blow-up for a non-newtonian polytropic filtration system with nonlinear nonlocal source, Commun. Korean Math. Soc. 23 (2008), no. 4, 529-540.