DOI QR코드

DOI QR Code

RIGIDITY THEOREMS IN THE HYPERBOLIC SPACE

  • De Lima, Henrique Fernandes (Departamento de Matematica e Estatistica Universidade Federal de Campina Grande)
  • Received : 2011.05.04
  • Published : 2013.01.31

Abstract

As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the $(n+1)$-dimensional hyperbolic space $\mathbb{H}^{n+1}$. In our approach, we explore the existence of a natural duality between $\mathbb{H}^{n+1}$ and the half $\mathcal{H}^{n+1}$ of the de Sitter space $\mathbb{S}_1^{n+1}$, which models the so-called steady state space.

Keywords

hyperbolic space;complete hypersurfaces;mean curvature;Gauss map

References

  1. L. J. Alias and M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81 (2006), no. 3, 653-663.
  2. F. E. C. Camargo, A. Caminha, and H. F. de Lima, Bernstein-type Theorems in Semi-Riemannian Warped Products, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1841-1850. https://doi.org/10.1090/S0002-9939-2010-10597-X
  3. A. Caminha and H. F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91-105.
  4. A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72.
  5. H. F. de Lima, Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space, J. Geom. Phys. 57 (2007), no. 3, 967-975. https://doi.org/10.1016/j.geomphys.2006.07.005
  6. R. Lopez and S. Montiel, Existence of constant mean curvature graphs in hyperbolic space, Calc. Var. Partial Differential Equations 8 (1999), no. 2, 177-190. https://doi.org/10.1007/s005260050122
  7. S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces, J. Math. Soc. Japan 55 (2003), no. 4, 915-938. https://doi.org/10.2969/jmsj/1191418756
  8. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), no. 2, 711-748.
  9. S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math. Ann. 314 (1999), no. 3, 529-553. https://doi.org/10.1007/s002080050306
  10. S. Montiel, An integral inequality for compact spacelike hypersurfaces in De Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), no. 4, 909-917. https://doi.org/10.1512/iumj.1988.37.37045
  11. H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214. https://doi.org/10.2969/jmsj/01920205
  12. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. https://doi.org/10.1002/cpa.3160280203
  13. S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. https://doi.org/10.1512/iumj.1976.25.25051

Cited by

  1. On Bernstein-Type Theorems in Semi-Riemannian Warped Products vol.2013, 2013, https://doi.org/10.1155/2013/959143