• De Lima, Henrique Fernandes (Departamento de Matematica e Estatistica Universidade Federal de Campina Grande)
  • Received : 2011.05.04
  • Published : 2013.01.31


As a suitable application of the well known generalized maximum principle of Omori-Yau, we obtain rigidity results concerning to a complete hypersurface immersed with bounded mean curvature in the $(n+1)$-dimensional hyperbolic space $\mathbb{H}^{n+1}$. In our approach, we explore the existence of a natural duality between $\mathbb{H}^{n+1}$ and the half $\mathcal{H}^{n+1}$ of the de Sitter space $\mathbb{S}_1^{n+1}$, which models the so-called steady state space.


hyperbolic space;complete hypersurfaces;mean curvature;Gauss map


  1. L. J. Alias and M. Dajczer, Uniqueness of constant mean curvature surfaces properly immersed in a slab, Comment. Math. Helv. 81 (2006), no. 3, 653-663.
  2. F. E. C. Camargo, A. Caminha, and H. F. de Lima, Bernstein-type Theorems in Semi-Riemannian Warped Products, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1841-1850.
  3. A. Caminha and H. F. de Lima, Complete vertical graphs with constant mean curvature in semi-Riemannian warped products, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 91-105.
  4. A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72.
  5. H. F. de Lima, Spacelike hypersurfaces with constant higher order mean curvature in de Sitter space, J. Geom. Phys. 57 (2007), no. 3, 967-975.
  6. R. Lopez and S. Montiel, Existence of constant mean curvature graphs in hyperbolic space, Calc. Var. Partial Differential Equations 8 (1999), no. 2, 177-190.
  7. S. Montiel, Complete non-compact spacelike hypersurfaces of constant mean curvature in de Sitter spaces, J. Math. Soc. Japan 55 (2003), no. 4, 915-938.
  8. S. Montiel, Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds, Indiana Univ. Math. J. 48 (1999), no. 2, 711-748.
  9. S. Montiel, Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes, Math. Ann. 314 (1999), no. 3, 529-553.
  10. S. Montiel, An integral inequality for compact spacelike hypersurfaces in De Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988), no. 4, 909-917.
  11. H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
  12. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.
  13. S. T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670.

Cited by

  1. On Bernstein-Type Theorems in Semi-Riemannian Warped Products vol.2013, 2013,