• Zhao, Xiaopeng ;
  • Liu, Bo
  • Received : 2011.07.03
  • Published : 2013.01.31


This paper is concerned with the long time behavior for the solution semiflow of the coupled two-compartment Gray-Scott equations with the homogeneous Neumann boundary condition on a bounded domain of space dimension $n{\leq}3$. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that the equations possesses a global attractor in $H^k({\Omega})^4$ ($k{\geq}0$) space.


global attractor;two-compartment Gray-Scott equations;regularity estimates


  1. M. Ashkenazi and H. G. Othmer, Spatial patterns in coupled biochemical oscillators, J. Math. Biol. 5 (1978), no. 4, 305-350.
  2. J. F. G. Auchmuty and G. Nicolis, Bifurcation analysis of nonlinear reaction-diffusion equations I: evolution equations and the steady state solutions, Bull. Math. Biol. 37 (1975), no. 4, 323-365.
  3. T. Dlotko, Global attractor for the Cahn-Hilliard equation in $H^2$ and $H^3$, J. Differential Equations 113 (1994), no. 2, 381-393.
  4. P. Gormley, K. Li, and G. W. Irwin, Modeling molecular interaction pathways using a two-stage identification algorithm, Syst. Synth. Biol. 1 (2007), no. 3, 145-160.
  5. P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci. 38 (1983), 29-43.
  6. P. Gray and S. K. Scott, Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system A + 2B ${\rightarrow}$ 3B, B ${\rightarrow}$ C, Chem. Eng. Sci. 39 (1984), 1087-1097.
  7. P. Gray and S. K. Scott, Chemical Waves and Instabilities, Clarendon, Oxford, 1990.
  8. J. K. Hale, L. A. Peletier, andW. C. Troy, Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math. 61 (2000), no. 1, 102-130.
  9. M. Kawato and R. Suzuki, Two coupled neural oscillators as a model of the circadian pacemaker, J. Theoret. Biol. 86 (1980), no. 3, 547-575.
  10. K. J. Lee, W. D. McCormick, J. E. Pearson, and H. L. Swinney, Experimental observations of self-replicating spots in a reaction-diffusion system, Nature 369 (1994), 215-218.
  11. D. S. Li and C. K. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations 149 (1998), no. 2, 191-210.
  12. T. Ma and S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Science Press, Beijing, 2006, (in Chinese).
  13. J. S. McGough and K. Riley, Pattern formation in the Gray-Scott model, Nonlinear Anal. Real World Appl. 5 (2004), no. 1, 105-121.
  14. Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model, Phys. D 150 (2001), 137-162.
  15. I. Schreiber and M. Marek, Strange attractors in coupled reaction-diffusion cells, Phys. D 5 (1982), no. 2-3, 258-272.
  16. G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.
  17. L. Song, Y. Zhang, and T. Ma, Global attractor of the Cahn-Hilliard euqation in $H^k$ spaces, J. Math. Anal. Appl. 355 (2009), no. 1, 53-62.
  18. L. Song, Y. Zhang, and T. Ma, Global attractor of a modified Swift-Hohenberg equation in $H^k space, Nonlinear Anal. 72 (2010), no. 1, 183-191.
  19. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
  20. Y. You, Dynamics of two-compartment Gray-Scott equations, Nonlinear Anal. 74 (2011), no. 5, 1969-1986.
  21. Y. You, Global dynamics of a reaction-diffusion system, Electron. J. Differential Equations 2011 (2011), no. 25, 1-28.
  22. X. Zhao and B. Liu, The existence of global attractor for convective Cahn-Hilliard equation, J. Korean Math. Soc. 49 (2012), no. 2, 357-378.
  23. X. Zhao and C. Liu, The existence of global attractor for a fourth-order parabolic equation, Appl. Anal. 92 (2013), no. 1, 44-59.
  24. S. Zheng and A. Milani, Global attractors for singular perturbations of the Cahn-Hilliard equations, J. Differential Equations 209 (2005), no. 1, 101-139.


Supported by : Jilin University