Colonna, Flavia

  • Received : 2011.07.11
  • Published : 2013.01.31


We study the bounded and the compact weighted composition operators from the Hardy space $H^{\infty}$ into BMOA and into VMOA, from BMOA into $H^{\infty}$, as well as from BMOA into the Bloch space. We also provide new boundedness and compactness criteria for the weighted composition operators on BMOA and on VMOA.


weighted composition operators;BMOA;VMOA;Bloch space;Hardy space


  1. R. F. Allen and F. Colonna, Weighted composition operators on the Bloch space of a bounded homogeneous domain, Topics in operator theory. Volume 1. Operators, matrices and analytic functions, 1137, Oper. Theory Adv. Appl., 202, Birkhuser Verlag, Basel, 2010.
  2. J. M. Anderson, J. Clunie, and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 279 (1974), 12-37.
  3. A. Baernstein, Univalence and bounded mean oscillation, Michigan Math. J. 23 (1976), no. 3, 217-223.
  4. P. S. Bourdon, J. Cima, and A. L. Matheson, Compact composition operators on BMOA, Trans. Amer. Math. Soc. 351 (1999), no. 6, 2183-2196.
  5. J. Cima and G. Schober, Analytic functions with bounded mean oscillation and logarithms of $H^p$ functions, Math. Z. 171 (1976), no. 3, 295-300.
  6. F. Colonna, New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space, Centr. Eur. J. Math., to appear.
  7. J. B. Garnett, Bounded Analytic Functions, Pure and Applied Math., 96, Academic Press, Orlando FL, 1981.
  8. D. Girela, Analytic functions of bounded mean oscillation, Complex Function Spaces (Mekrijarvi, 1999), 61-170, Univ. Joensuu Dept. Math. Rep. Ser., 4, Univ. Joensuu, Joensuu, 2001.
  9. D. Girela, Integral means and BMOA-norms of logarithms of univalent functions, J. London Math. Soc. (2) 33 (1986), no. 1, 117-132.
  10. T. Hosokawa, K. Izuchi, and S. Ohno, Topological structure of the space of weighted composition operators on $H^{\infty}$, Integral Equations Operator Theory 53 (2005), no. 4, 509-526.
  11. J. Laitila, Composition operators and vector-valued BMOA, Integral Equations Operator Theory 58 (2007), no. 4, 487-502.
  12. J. Laitila, Weighted composition operators on BMOA, Comput. Methods Funct. Theory 9 (2009), no. 1, 27-46.
  13. S. Li and S. Stevic, Weighted composition operators from ${\alpha}-Bloch$ space to $H^{\infty}$ on the polydisk, Numer. Funct. Anal. Optim. 28 (2007), no. 7-8, 911-925.
  14. S. Ohno and R. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), no. 2, 177-185.
  15. W. Smith, Compactness of composition operators on BMOA, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2715-2725.
  16. S. Stevic, Norm of weighted composition operators from Bloch space to $H_{\mu}^{\infty}$ on the unit ball, Ars Combin. 88 (2008), 125-127.
  17. M. Tjani, Compact composition operators on some Mobius inveriant Banach spaces, Doctoral Dissertation, Michigan State University, 1996.
  18. M. Tjani, Compact composition operators on Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4683-4698.
  19. H. Wulan, D. Zheng, and K. Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3861-3868.
  20. R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2537-2546.

Cited by

  1. The essential norm of a weighted composition operator on BMOA vol.279, pp.1-2, 2015,
  2. Norm and Essential Norm of a Weighted Composition Operator on the Bloch Space vol.87, pp.3, 2017,
  3. Weighted composition operators from the Besov spaces into the weighted-type space H μ ∞ vol.402, pp.2, 2013,