DOI QR코드

DOI QR Code

SINGULARITIES AND STRICTLY WANDERING DOMAINS OF TRANSCENDENTAL SEMIGROUPS

  • Huang, Zhi Gang ;
  • Cheng, Tao
  • Received : 2011.09.05
  • Published : 2013.01.31

Abstract

In this paper, the dynamics on a transcendental entire semigroup G is investigated. We show the possible values of any limit function of G in strictly wandering domains and Fatou components, respectively. Moreover, if G is of class $\mathfrak{B}$, for any $z$ in a Fatou domain, there does not exist a sequence $\{g_k\}$ of G such that $g_k(z){\rightarrow}{\infty}$ as $k{\rightarrow}{\infty}$.

Keywords

transcendental semigroup;strictly wandering domain;limit function;singularity

References

  1. I. N. Baker, Limit functions and sets of non-normality in iteration theory, Ann. Acad. Sci. Fenn. Ser. A I. 467 (1970), 2-11.
  2. I. N. Baker, Wandering domains in the iteration of entire functions, Proc. London Math. Soc. (3) 49 (1984), no. 3, 563-576.
  3. I. N. Baker, Limit functions in wandering domains of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 499-505.
  4. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), no. 2, 151-188. https://doi.org/10.1090/S0273-0979-1993-00432-4
  5. W. Bergweiler, M. Haruke, H. Kriete, H. G. Meier, and N. Terglane, On the limit functions of iterates in wandering domains, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), no. 2, 369-375.
  6. W. Bergweiler and Y. F. Wang, On the dynamics of composite entire functions, Ark. Mat. 36 (1998), no. 1, 31-39. https://doi.org/10.1007/BF02385665
  7. A. E. Eremenko and M. Y. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020. https://doi.org/10.5802/aif.1318
  8. A. Hinkkanen and G. J. Martin, The dynamics of semigroups of rational functions. I, Proc. London Math. Soc. (3) 73 (1996), no. 2, 358-384.
  9. A. Hinkkanen and G. J. Martin, Julia sets of rational semigroups, Math. Z. 222 (1996), no. 2, 161-169. https://doi.org/10.1007/BF02621862
  10. M. R. Perez, Sur une question de Dulac et Fatou, C. R. Acad. Sci. Paris Ser. I Math. 321 (1995), no. 8, 1045-1048.
  11. K. K. Poon, Fatou-Julia theory on transcendental semigroups, Bull. Austral. Math. Soc. 58 (1998), no. 3, 403-410. https://doi.org/10.1017/S000497270003238X
  12. K. K. Poon, Fatou-Julia theory on transcendental semigroups. II, Bull. Austral. Math. Soc. 59 (1999), no. 2, 257-262. https://doi.org/10.1017/S0004972700032871
  13. D. Sullivan, Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401-418. https://doi.org/10.2307/1971308
  14. J. H. Zheng, Singularities and wandering domains in iteration of meromorphic functions, Illinois J. Math. 44 (2000), no. 3, 520-530.
  15. J. H. Zheng, Singularities and limit functions in iteration of meromorphic functions, J. London Math. Soc. (2) 67 (2003), no. 1, 195-207. https://doi.org/10.1112/S0024610702003800
  16. J. H. Zheng, Iteration of functions which are meromorphic outside a small set, Tohoku Math. J. (2) 57 (2005), no. 1, 23-43. https://doi.org/10.2748/tmj/1113234832
  17. J. H. Zheng, On transcendental meromorphic functions which are geometrically finite, J. Aust. Math. Soc. 72 (2002), no. 1, 93-107. https://doi.org/10.1017/S144678870000361X

Cited by

  1. The dynamics of semigroups of transcendental entire functions I vol.46, pp.1, 2015, https://doi.org/10.1007/s13226-015-0104-0
  2. Semigroups of transcendental entire functions and their dynamics vol.127, pp.2, 2017, https://doi.org/10.1007/s12044-016-0298-z
  3. The dynamics of semigroups of transcendental entire functions II vol.47, pp.3, 2016, https://doi.org/10.1007/s13226-016-0173-8