DOI QR코드

DOI QR Code

A Study on Thermal, Mechanical and Electrical Properties as Silane Treated Epoxy/MICA Composites

실란처리된 Epoxy/MICA 콤포지트의 열적, 기계적 전기적 특성연구

  • Park, Jae-Jun (Dept. of Electrical Electronic Engineering, Joongbu University)
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.12.18
  • Accepted : 2013.01.15
  • Published : 2013.02.01

Abstract

In this study, epoxy/mica composite was prepared by mixing with mechanical stirrer together with homogenizer, and the effect of amino-type silane coupling agent was also studied. To reduce the viscosity without any decrement of other properties, 1,4-Butanediol diglycidyl ether (1,4-BDGE) as an aliphatic epoxy reactive diluent was introduced to the epoxy/mica composite in order to use as vanish for high voltage motor and generator stator winding. It was confirmed by scanning electron microscopy (SEM) observation that interfacial characteristics between organic epoxy and inorganic mica was modified by coupling agent treatment so that glass transition temperature increased, and tensile strength and electrical breakdown strength increased. The properties were estimated by Weibull statistical analysis and the ac electrical breakdown strength was 20.2% modified by treating silane coupling agent.

References

  1. P. O. Henk, T. W. Kortsen and T. Kvarts, High Perform. Polym., 11,281(1999).
  2. M. Ehsani, Z. Farhadinejad, S. Moemen-bellah, S. M. Bagher alavi, M. M. S. Shrazi and H. Borsi, 26thInternalPowerSystemConference,Tehran,Iran,11-ECAM- 2359(2011).
  3. P. Bajaj, N. K. Jha and A. Kumar, J. Appl. Polym. Sci., 56,1339(1995). https://doi.org/10.1002/app.1995.070561015
  4. Y. Xu, D. D. L. Chung and C. Mroz, Composites: Part A, 32,1749(2001). https://doi.org/10.1016/S1359-835X(01)00023-9
  5. A. A. Wazzan, H. A. Al-Turaif and A. F. Abdelkader, Polymer-Plastics Technology and Engineering, 45,1155(2006). https://doi.org/10.1080/03602550600887285
  6. R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445,567(2007). https://doi.org/10.1016/j.msea.2006.09.077
  7. N. Hayakawa, H. Maeda, S. Chigusa and H. Okubo, Cryogenics, 40,167(2000). https://doi.org/10.1016/S0011-2275(00)00024-2
  8. P. Gropper, T. Hildinger, F. Pohlmann and J. R. Weidner, 2012 CIGRE Session, Paris, A1-103 (2012).
  9. R. Bruetsch, M. Tari, K. Froehlich, T. Weiers and R. Vogelsang, IEEE International Symposium on Electrical Insulation, Vancouver, BC, Canada, p.162 (2008).
  10. P. Marek, F. Senn, W. Grubelnik and W. Ladstatter, Energize, 11,51(2007).
  11. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako and Tanaka, Proceedings of 2005 International Symposium on ,Electrical Insulating Materials p.1136(2006).
  12. G. Chen, J. Zhao, S. Li and L. Zhong, Appl. Phys. Lett., 100, 222904(2012). https://doi.org/10.1063/1.4721809
  13. Dow Corning:www.dowcorning.com/content/silanes/ siscmain.asp
  14. Farzana Hussain, Jihua Chen, Mehdi Hojjati, "Epoxy-silicate nanocomposites: Cure monitoring and characterization", Materials Science and Engineering A 445-446 (2007) 467-476 https://doi.org/10.1016/j.msea.2006.09.071
  15. T.N. Matheson, A.S. Vaughan, SJ. Sutton and A. Minigher,"Electrical Characteristics of Epoxy/nanoclay Nanodielectric Systems", 2007 International Conference on Solid Dielectrics, Winchester, UK, July 8-13, 2007
  16. J. K. Nelson, J. C. Fothergill, "Internal charge behaviour of nanocomposites", Nanotechnology vol. 15(2004) pp 586-595 https://doi.org/10.1088/0957-4484/15/5/032
  17. A. S. Vaughan, S. G. Swingler, Y. Zhang, "Polyethylene Nanodielectrics: The Influence of Nanoclays on Structure Formation and Dielectric Breakdown", IEEJ Trans. FM, vol. 126 no. 11
  18. Santanu Singha and M. Joy Thomas, "Dielectric Properties of Epoxy Nanocomposites", IEEE Transactions on Dielectrics and Electrical Insulation Vol. 15, No. 1; February 2008