DOI QR코드

DOI QR Code

Single-Crystal Structure of |Li50Na25|[Si117Al75O384]-FAU

  • Received : 2012.10.08
  • Accepted : 2012.11.12
  • Published : 2013.02.20

Abstract

The single-crystal structure of fully dehydrated partially $Li^+$-exchanged zeolite Y, ${\mid}Li_{50}Na_{25}{\mid}[Si_{117}Al_{75}O_{384}]$-FAU, was determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group $Fd\bar{3}m$ at 100(1) K. Ion exchange was accomplished by flowing stream of 0.1 M aqueous $LiNO_3$ for 2 days at 293 K, followed by vacuum dehydration at 623 K and $1{\times}10^{-6}$ Torr for 2 days. The structure was refined using all intensities to the final error indices (using only the 801 reflections with ($F_o$ > $4{\sigma}(F_o)$) $R_1/R_2=0.043/0.140$. The 50 $Li^+$ ions per unit cell are found at three different crystallographic sites. The 19 $Li^+$ ions occupy at site I' in the sodalite cavity: the $Li^+$ ions are recessed 0.30 ${\AA}$ into the sodalite cavity from their 3-oxygens plane (Li-O = 1.926(5) ${\AA}$ and $O-Li-O=117.7(3)^{\circ}$). The 20 $Li^+$ ions are found at site II in the supercage, being recessed 0.23 ${\AA}$ into the supercage (Li-O = 2.038(5) ${\AA}$ and $O-Li-O=118.7(3)^{\circ}$). Site III' positions are occupied by 11 $Li^+$ ions: these $Li^+$ ions bind strongly to one oxygen atom (Li-O = 2.00(8) ${\AA}$). About 25 $Na^+$ ions per unit cell are found at four different crystallographic sites: 4 $Na^+$ ions are at site I, 5 at site I', 12 at site II, and the remaining 4 at site III'.

Keywords

Lithium;Zeolite Y;Ion exchange;Structure;Dehydrated

References

  1. Breck, D. W. Zeolite Molecular Sieves; Wiley: New York, 1974.
  2. Seo, S. M.; Kim, G. H.; Lee, S. H.; Bae, J. S.; Lim, W. T. Bull. Korean Chem. Soc. 2009, 30, 1285. https://doi.org/10.5012/bkcs.2009.30.6.1285
  3. Warzywoda, J.; Valcheva-Traykova, M.; Rossetti, Jr., G. A.; Bac, N.; Joesten, R.; Suib, S. L.; Sacco, Jr., A. J. Cryst. Growth 2000, 220, 150. https://doi.org/10.1016/S0022-0248(00)00660-6
  4. Baerlocher, C.; Meier, W. M.; Olsen, D. H. Atlas of Zeolite Framework Types, 5th ed.; Elsevier: Amsterdam, 2001.
  5. Kwon, J. H.; Jang, S. B.; Kim, Y.; Seff, K. J. Phys. Chem. 1996, 100, 13720. https://doi.org/10.1021/jp9603647
  6. Seff, K. In Studies in Surface Science and Catalysis; Elsevier: New York, 1996, 102, 267.
  7. Chao, C.; Sherman, J.; Mullhaupt, J. T.; Boliner, C. M. Mixed Ion-exchanged Zeolites and Processes for The use Thereof in Gas separations. U.S. Patent 5,413,625, 1995.
  8. Gaffney, T. R. Solid State and Materials Science 1996, 1, 69. https://doi.org/10.1016/S1359-0286(96)80013-1
  9. Feuerstein, M.; Accardi, R. J.; Lobo, R. F. J. Phys. Chem. B 2000, 104, 10281.
  10. Zhu, J.; Mosey, N.; Woo, T.; Huang, Y. J. Phys. Chem. C 2007, 111, 13427. https://doi.org/10.1021/jp0706275
  11. Pitchumani, K.; Ramamurthy, V. Tetrahedron 1996, 37, 5279.
  12. Forano, C.; Slade, R. C. T.; Krogh Andersen, E.; Krogh Andersen, I. G.; Prince. E. J. Solid State Chem. 1989, 82, 95. https://doi.org/10.1016/0022-4596(89)90227-2
  13. Plevert, J.; Di Renzo, F.; Fajula, F. J. Phys. Chem. B 1997, 101, 10340. https://doi.org/10.1021/jp9714330
  14. Feuerstein, M.; Lobo, R. F. Chem. Mater. 1998, 10, 2197. https://doi.org/10.1021/cm980112d
  15. Shepelev, Y. F.; Anderson, A. A.; Smolin, Y. I. Zeolites 1990, 10, 61. https://doi.org/10.1016/0144-2449(90)90095-9
  16. Kim, H. S.; Ko, S. O.; Lim, W. T. Bull. Korean Chem. Soc. 2012, 33, 3303. https://doi.org/10.5012/bkcs.2012.33.10.3303
  17. Kim, H. S.; Bae, D.; Lim, W. T.; Seff, K. J. Phys. Chem. C 2012, 116, 9009. https://doi.org/10.1021/jp300321x
  18. Lim, W. T.; Seo, S. M.; Wang, L. Z.; Lu, G. Q.; Heo, N. H.; Seff, K. Microporous Mesoporous Mater. 2010, 129, 11. https://doi.org/10.1016/j.micromeso.2009.08.028
  19. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307. https://doi.org/10.1016/S0076-6879(97)76066-X
  20. Bruker-AXS, XPREP, version 6.12, Program for the Automatic Space Group Determination. Bruker AXS Inc.: Madison, WI, 2001.
  21. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures. University of Gottingen: Germany; 1997.
  22. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Seff, K. Microporous Mesoporous Mater. 2006, 92, https://doi.org/10.1016/j.micromeso.2005.11.052
  23. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390. https://doi.org/10.1107/S0567739468000756
  24. International Tables for X-ray Crystallography; Ibers, J. A.; Hamilton, W. C., Eds.; Kynoch Press: Birmingham: England, 1974; Vol. IV, pp 71-98.
  25. Cromer, D. T. Acta Crystallogr. 1965, 18, 17. https://doi.org/10.1107/S0365110X6500004X
  26. International Tables for X-ray Crystallography; Ibers, J. A.; Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150.
  27. Loewenstein, W. Am. Mineral. 1954, 39, 92.
  28. Smith, J. V. Molecular Sieve Zeolites-I; Flanigen, E. M.; Sand, L. B., Eds.; Advances in Chemistry Series: American Chemical Society, Washington, D. C., 1971; Vol. 101, pp 171-200.
  29. Song, M. K.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 3117. https://doi.org/10.1021/jp0215623
  30. Handbook of Chemistry and Physics, 70th ed.; CRC Press: Cleveland, OH, 1989/1990; pp F-187.
  31. Wozniak, A.; Marler, B.; Angermund, K.; Gies, H. Chem. Mater. 2008, 20, 5968. https://doi.org/10.1021/cm703654a
  32. Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, 1996/1997; pp 12-14.
  33. Su, H.; Kim, H. S.; Seo, S. M.; Ko, S. O.; Suh, J. M.; Kim, G. H.; Lim, W. T. Bull. Korean Chem. Soc. 2012, 33, 2785. https://doi.org/10.5012/bkcs.2012.33.8.2785
  34. Seo, S. M.; Kim, G. H.; Lee, H. S.; Ko, S. O.; Lee, O. S.; Kim, Y. H.; Kim, S. H.; Heo, N. H.; Lim, W. T. Anal. Sci. 2006, 22, 209. https://doi.org/10.2116/analsci.22.209

Cited by

  1. Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions vol.5, pp.1, 2015, https://doi.org/10.1038/srep15277
  2. Size-Controlled and Optical Properties of Platinum Nanoparticles by Gamma Radiolytic Synthesis 2017, https://doi.org/10.1016/j.apradiso.2017.09.012

Acknowledgement

Supported by : Rural Development Administration