DOI QR코드

DOI QR Code

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M. ;
  • El-Lateef, Hany M. Abd ;
  • Aliyeva, Leylufer I. ;
  • Ismayilov, Ismayil T. ;
  • Qasimov, Elmar E. ;
  • Narmin, Mamedova M.
  • Received : 2012.06.24
  • Accepted : 2012.11.23
  • Published : 2013.02.20

Abstract

The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

Keywords

Complex surfactants;Corrosion;Sunflower oil;Mild steel;Adsorption isotherm

References

  1. Fouda, A. S.; Abdallah, M.; Ahmed, I. S.; Eissa, M. Arabian Journal of Chemistry, in press, 2010.
  2. Fouda, A. S.; Moussa, M. N.; Taha, F. I.; Elneanaa, A. I. Corros. Sci. 1986, 26, 719. https://doi.org/10.1016/0010-938X(86)90035-1
  3. El-Sayed, A.; Mohran, H. S., Abd El-Lateef, H. M. Monatsh Chem. 2012, 143, 51. https://doi.org/10.1007/s00706-011-0558-7
  4. Ahamad, I.; Quraishi, M. A. Corros. Sci. 2009, 51, 2006. https://doi.org/10.1016/j.corsci.2009.05.026
  5. Obot, I. B.; Obi-Egbedi, N. O. Corros. Sci. 2010, 52, 198. https://doi.org/10.1016/j.corsci.2009.09.002
  6. Popova, A.; Sokolova, E.; Raicheva, S.; Christov, M. Corros. Sci. 2003, 45, 33. https://doi.org/10.1016/S0010-938X(02)00072-0
  7. Shukla, S. K.; Quraishi, M. A. Corros. Sci. 2009, 51, 1990. https://doi.org/10.1016/j.corsci.2009.05.020
  8. Behpour, M.; Ghoreishi, S. M.; Soltani, N.; Salavati-Niasari, M.; Hamadanian, M.; Gandomi, A. Corros. Sci. 2008, 50, 2172. https://doi.org/10.1016/j.corsci.2008.06.020
  9. Qiu, L.; Wu, Y.; Wang, Y.; Jiang, X. Corros. Sci. 2008, 50, 576. https://doi.org/10.1016/j.corsci.2007.07.010
  10. Hosseini, S. M. A.; Azimi, A. Corros. Sci. 2009, 51, 728. https://doi.org/10.1016/j.corsci.2008.11.019
  11. Hosseni, M.; Mertens, S. F. L.; Ghorbanifar, M.; Arshadi, A. R. Mater. Chem. Phys. 2003, 78, 800. https://doi.org/10.1016/S0254-0584(02)00390-5
  12. Bentiss, F.; Lebrini, M.; Vezin, H.; Lagrenee, M. Mater. Chem. Phys. 2004, 87, 18. https://doi.org/10.1016/j.matchemphys.2004.05.040
  13. Benali, O.; Larabi, L.; Tabti, B.; Harek, Y. Anti-Corros. Method Mater. 2005, 52, 280. https://doi.org/10.1108/00035590510615776
  14. Li, D. G.; Feng, Y. R.; Bai, Z. Q.; Zheng, M. S. App. Sur. Sci. 2007, 253(20), 8371. https://doi.org/10.1016/j.apsusc.2007.04.011
  15. Li, T.; Yang, Y.; Gao, K.; Lu, M. J. Univ. Sci. Technol. B., Mineral, Metallurgy, Material 2008, 15(6), 702.
  16. Lopez, D. A.; Simison, S. N.; de Sanchez, S. R. Corros. Sci. 2005, 47(3), 735. https://doi.org/10.1016/j.corsci.2004.07.010
  17. Nesic, S.; Postlethwaite, J.; Olsen, S. Corrosion 1996, 52(4), 280. https://doi.org/10.5006/1.3293640
  18. Sun, M.; Nesic, S. Corrosion 2008, 64(4), 334. https://doi.org/10.5006/1.3278477
  19. Sun, W.; Nesic, S.; Papavinasam, S. Corrosion 2008, 64(7), 586. https://doi.org/10.5006/1.3278494
  20. Wang, F.; Postlethwaite, J. CORROSION/2001, Paper No. 41 (Houston, TX: NACE, 2001).
  21. Abd El-Lateef, H. M.; Abbasov, V. M.; Aliyeva, L. I.; Ahmedov, N. S. Petrochemistry and oil Refining 2011, 12, 4(48), 231.
  22. Abd El-Lateef, H. M.; Aliyeva, L. I.; Abbasov, V. M.; Ismayilov, I. T.; Ismayilova, X. R. Chemistry J. 2012, 2, 51.
  23. Fuchs-Godec, R.; Dolecek, V.; Colloids Surf., A 2004, 244, 73. https://doi.org/10.1016/j.colsurfa.2004.05.015
  24. Bastidas, J. M.; Pinilla, P.; Polo, J. L.; Miguel, S. Corros. Sci. 2003, 45, 427. https://doi.org/10.1016/S0010-938X(02)00123-3
  25. Bolzan, A. E.; Wakenge, I. B.; Piatti, R. C. V.; Salvarezza, R. C.; Arvia, A. J. J. Electroanal. Chem. 2001, 501, 241. https://doi.org/10.1016/S0022-0728(00)00535-0
  26. Stipnisek-Lisac, E.; Gazivoda, A.; Madzarac, M. Electrochim. Acta. 2002, 47, 4189. https://doi.org/10.1016/S0013-4686(02)00436-X
  27. Sahin, M.; Bilgic, S.; Yilmaz, H. Appl. Surf. Sci. 2002, 195, 1. https://doi.org/10.1016/S0169-4332(01)00783-8
  28. Alberta Aryee, N. A.; Frederik, R.; de Voort, V.; Simpson, B. K. Process Biochem. 2009, 44, 401. https://doi.org/10.1016/j.procbio.2008.12.004
  29. Singh, A.; Singh, V. K.; Quraishi, M. A. Rasayan J. Chem. 2010, 3, 811.
  30. Oguzie, E. E. Corros. Sci. 2007, 49, 1527. https://doi.org/10.1016/j.corsci.2006.08.009
  31. Interfacial Phenomena in Apolar Media; Surfactant Science Series, Vol. 21, Marcel Dekker Inc.: New York, 1987, p 166.
  32. Abd El-Lateef, H. M.; Aliyeva, L. I.; Abbasov, V. M.; Ismayilov, T. I. Adv. App. Sci. Res. 2012, 3(2), 1185.
  33. Farelas, F.; Ramirez, A. Int. J. Electrochem. Sci. 2010, 5, 797.
  34. Ibrahim, T. H.; Abou Zour, M. Int. J. Electrochem. Sci. 2011, 6, 6442.
  35. Zhang, Z.; Chen, S.; Li, Y.; Li, S.; Wang, L. Corros. Sci. 2009, 51, 291. https://doi.org/10.1016/j.corsci.2008.10.040
  36. Chauhan, L. R.; Gunasekaran, G. Corros. Sci. 2007, 49, 1143. https://doi.org/10.1016/j.corsci.2006.08.012
  37. Avci, G. Colloids Surf., A. 2008, 317, 730. https://doi.org/10.1016/j.colsurfa.2007.12.009
  38. Qi Zhang; Zhinong Gao; Feng Xu; Xia Zou; Colloids Surf., A 2011, 380, 191. https://doi.org/10.1016/j.colsurfa.2011.02.035
  39. Khaled, K. F.; Al-Qahtani, M. M. Mater. Chem. Phys. 2009, 113, 150. https://doi.org/10.1016/j.matchemphys.2008.07.060
  40. Sahin, M. S.; Bilgic; Yilmaz, H. Appl. Surf. Sci. 2002, 195, 1. https://doi.org/10.1016/S0169-4332(01)00783-8
  41. Refay, S. A.; Taha, F.; Abd El-Malak, A. M. Appl. Surf. Sci. 2004, 236, 175. https://doi.org/10.1016/j.apsusc.2004.04.016
  42. Branzoi, V.; Branzoi, F.; Baibarac, M. Mater. Chem. Phys. 2000, 65, 288. https://doi.org/10.1016/S0254-0584(00)00260-1
  43. Yurt, A.; Ulutas, S.; Dal, H. Appl. Surf. Sci. 2006, 253, 919. https://doi.org/10.1016/j.apsusc.2006.01.026

Cited by

  1. Synthesis and evaluation of novel series of Schiff base cationic surfactants as corrosion inhibitors for carbon steel in acidic/chloride media: experimental and theoretical investigations vol.6, pp.11, 2016, https://doi.org/10.1039/C5RA21626E
  2. Novel Quaternary Ammonium-Based Cationic Surfactants: Synthesis, Surface Activity and Evaluation as Corrosion Inhibitors for C1018 Carbon Steel in Acidic Chloride Solution vol.20, pp.3, 2017, https://doi.org/10.1007/s11743-017-1947-7
  3. Mild steel green inhibition by Ficus carica leaves extract under practical field conditions vol.31, pp.24, 2017, https://doi.org/10.1080/01694243.2017.1317458
  4. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds vol.743, 2015, https://doi.org/10.1016/j.jelechem.2015.02.023
  5. Novel naphthenate surfactants based on petroleum acids and nitrogenous bases as corrosion inhibitors for C1018-type mild steel in CO2-saturated brine vol.24, pp.2, 2015, https://doi.org/10.1016/j.ejpe.2015.05.010
  6. Corrosion inhibition of carbon steel pipelines by some novel Schiff base compounds during acidizing treatment of oil wells studied by electrochemical and quantum chemical methods vol.1130, 2017, https://doi.org/10.1016/j.molstruc.2016.10.078
  7. Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions vol.92, 2015, https://doi.org/10.1016/j.corsci.2014.11.040
  8. Evaluation of biocidal properties of vegetable oil-based corrosion inhibitors using bioluminescent enzymatic method vol.70, pp.4, 2015, https://doi.org/10.3103/S0027131415040033
  9. Assessment of corrosion inhibitive behavior of 2-aminothiophenol derivatives on carbon steel in 1M HCl vol.23, 2015, https://doi.org/10.1016/j.jiec.2014.07.042
  10. Theoretical and experimental investigations on corrosion control of mild steel in hydrochloric acid solution by 4-aminothiophenol vol.66, pp.1, 2019, https://doi.org/10.1108/ACMM-04-2018-1920