DOI QR코드

DOI QR Code

Effects of Aluminum Nanoparticles on Thermal Decomposition of Ammonium Perchlorate

  • Zhu, Yan-Li ;
  • Huang, Hao ;
  • Ren, Hui ;
  • Jiao, Qing-Jie
  • Received : 2012.06.14
  • Accepted : 2012.12.31
  • Published : 2013.02.20

Abstract

The effects of aluminum nanoparticles (AlNs) on the thermal decomposition of ammonia perchlorate (AP) were investigated by DSC, TG-DSC and DSC-TG-MS-FTIR. Addition of AlNs resulted in an increase in the temperature of the first exothermic peak of AP and a decrease in the second. The processing of non-isothermal data at various heating rates with and without AlNs was performed using Netzsch Thermokinetics. The dependence of the activation energy calculated by Friedman's isoconversional method on the conversion degree indicated the decomposition process can be divided into three steps. They were C1/D1/D1 for neat AP, determined by Multivariate Non-linear Regression, and changed to C1/D1/F2 after addition of AlNs into AP. The isothermal curves showed that the thermal stability of AP in the low temperature stage was improved in the presence of AlNs.

Keywords

Aluminum nanoparticle;Thermal decomposition;Ammonium perchlorate;Explosive

References

  1. Ma, Z.; Li, F.; Chen, A. Preparation and Thermal Decomposition Behavior of TMOs/AP Composite Nanoparticles. Nanoscience 2006, 11, 142.
  2. Fujimura, K.; Miyake, A. The Effect of Specific Surface Area of $TiO_{2}$ on the Thermal Decomposition of Ammonium Perchlorate. J. Therm. Anal. Calorim. 2010, 99, 27. https://doi.org/10.1007/s10973-009-0462-0
  3. Wang, J.; He, S.; Li, Z.; Jing, X.; Zhang, M.; Jiang, Z. Synthesis of Chrysalis-like CuO Nanocrystals and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate. J. Chem. Sci. 2009, 121, 1077. https://doi.org/10.1007/s12039-009-0122-8
  4. Heng, B.; Xiao, T.; Hua, X.; Ming, Y.; Wei, T.; Wei, H.; Tang, Y. Catalytic Activity of $Cu_{2}O$ Micro-particles with Different Morphologies in the Thermal Decomposition of Ammonium Perchlorate. Thermochim. Acta 2011, 524, 135.
  5. Chen, L.-J.; Li, G.-S.; Li, L.-P. CuO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate Stabilization, Structural Characterization and Catalytic Activities. J. Therm. Anal. Calorim. 2008, 91, 581. https://doi.org/10.1007/s10973-007-8496-7
  6. Rajic, M.; Suceska, M. Study of Thermal Decomposition Kinetics of Low-temperature Reaction of Ammonium Perchlorate by Isothermal TG. J. Therm. Anal. Calorim. 2001, 63, 375. https://doi.org/10.1023/A:1010136308310
  7. Raha, K.; Ramamurthy, S.; Patil, D. G. The Catalytic Effect of Rare Earth Oxides on the Thermal Decomposition of Ammonium Perchlorate. J. Therm. Anal. 1989, 35, 1205. https://doi.org/10.1007/BF01913039
  8. Joshi, S. S.; Patil, P. R.; Krishnamurthy, V. N. Thermal DEcomposition Of Ammonium Perchlorate In The presence of Nanosized Ferric Oxide. Defence Science Journal 2008, 58, 721. https://doi.org/10.14429/dsj.58.1699
  9. Survasea, D. V.; Sarwadea, D. B.; Kurian, E. M. Effect of $La_{2}O_{3}$, $Pr_{2}O_{3}$ and $Nd_{2}O_{3}$ on the Thermal Decomposition of Ammonium Perchlorate. Journal of Energetic Materials 2001, 19, 023. https://doi.org/10.1080/07370650108219391
  10. Dedgaonkar, V. G.; Sarwade, D. B. Effects of Different Additives on the Thermal Decomposition of Ammonium Perchlorate. J. Therm. Anal. 1990, 36, 223. https://doi.org/10.1007/BF01912084
  11. Li, C.; Ma, Z.; Zhang, L.; Qian, R. Preparation of Ni/$TiO_{2}$ Nanoparticles and Their Catalytic Performance on the Thermal Decomposition of Ammonium Perchlorate. Chin. J. Chem. 2009, 27, 1863. https://doi.org/10.1002/cjoc.200990312
  12. Song, M.; Chen, M.; Zhang, Z. Effect of Zn Powders on the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2008, 33, 261. https://doi.org/10.1002/prep.200800222
  13. Duan, H.; Lin, X.; Liu, G.; Xu, L.; Li, F. Synthesis of Co Nanoparticles and Their Catalytic Effect on the Decomposition of Ammonium Perchlorate. Chin. J. Chem. Eng. 2008, 16, 325. https://doi.org/10.1016/S1004-9541(08)60082-8
  14. Zhi, J.; Wang, T.; Li, S.; Zhao, F.; Liu, Z.; Yang, C.; Yang, L.; Liu, S.; Zhang, G. Thermal Behavior of Ammonium Perchlorate and Metal Powders of Different Grades. J. Therm. Anal. Calorim. 2006, 85, 315. https://doi.org/10.1007/s10973-005-7035-7
  15. Liu, L.; Li, F.; Tan, L.; Ming, L.; Yi, Y. Effects of Nanometer Ni, Cu, Al and NiCu Powders on the Thermal Decomposition of Ammonium Perchlorate. Propellants Explos. Pyrotech. 2004, 29, 34. https://doi.org/10.1002/prep.200400026
  16. Rajendran, A. G.; Kartha, C. B.; Babu, V. V. Influence of Specific Surface Area of Aluminium Powder on the Reactivity of Aluminium/ammonium Perchlorate Composition. Propellants Explos. Pyrotech. 1997, 22, 226. https://doi.org/10.1002/prep.19970220409
  17. Stephens, M.; Sammet, T.; Petersen, E.; Carro, R.; Wolf, S.; Smith, C. Performance of Ammonium-perchlorate-based Composite Propellant Containing Nanoscale Aluminum. J. Propul. Power 2010, 26, 461. https://doi.org/10.2514/1.45148
  18. Srinivas, V.; Chakravarthy, S. R. Computer Model of Aluminum Agglomeration on Burning Surface of Composite Solid Propellant. J. Propul. Power 2007, 23, 728. https://doi.org/10.2514/1.24797
  19. Liu, L.; Li, F.; Tan, L.; Ming, L.; Yi, Y. Effects of Metal and Composite Metal Nanopowders on the Thermal Decomposition of Ammonium Perchlorate (AP) and the Ammonium Perchlorate/Hydroxyterminated Polybutadiene (AP/ HTPB) Composite Solid Propellant. Chin. J. Chem. Eng. 2004, 12, 595.
  20. Opfermann, J. Kinetic Analysis Using Multivariate Nonlinear Regression, J Therm. Anal. Calorim. 2000, 60, 641. https://doi.org/10.1023/A:1010167626551
  21. Shen, S.; Wu, B. The Thermal Decomposition of Ammonium Perchlorate (AP) Containing a Burning-rate Modifier, Thermochim. Acta 1993, 223, 135. https://doi.org/10.1016/0040-6031(93)80128-W
  22. Majdaa, D.; Korobovb, A.; Filekc, U.; Sulikowskic, B.; Midgleyd, P.; Nicold, D. A.; Klinowski, J. Low-temperature Thermal Decomposition of Crystalline Partly and Completely Deuterated Ammonium Perchlorate. Chem. Phys. Lett. 2011, 504(4-6), 185. https://doi.org/10.1016/j.cplett.2011.01.069
  23. Jiang, Z.; Zhao, F. Study on Effects of Nanometer Metal Powder on Thermal Decomposition of HMX. J. Propu. Tech. 2002, 23, 58.
  24. Trunov, M. A.; Umbrajkar, S. M.; Schoenitz, M.; Mang, J. T. Oxidation and Melting of Aluminum Nanopowders. J. Phys. Chem. B 2006, 110, 13094. https://doi.org/10.1021/jp0614188

Cited by

  1. New roles for metal–organic frameworks: fuels for environmentally friendly composites vol.7, pp.18, 2017, https://doi.org/10.1039/C6RA28679H
  2. Production of the Spherical Nano-Al/AP Composites by Drowning-Out/Agglomeration and Their Solid-Reaction Kinetics vol.55, pp.39, 2016, https://doi.org/10.1021/acs.iecr.6b01558
  3. Effects of aluminum on thermal decomposition of hexogen/ammonium perchlorate vol.30, pp.4, 2014, https://doi.org/10.1007/s40242-014-4016-z
  4. Catalyst for Lithium Perchlorate Decomposition vol.31, pp.5, 2015, https://doi.org/10.2514/1.B35582
  5. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions vol.57, 2016, https://doi.org/10.1016/j.pecs.2016.08.002
  6. Evolved Gas Analysis by Mass Spectrometry vol.49, pp.8, 2014, https://doi.org/10.1080/05704928.2014.887021
  7. Catalytic effect of Fe2O3, Mn2O3, and TiO2 nanoparticles on thermal decomposition of potassium nitrate vol.124, pp.2, 2016, https://doi.org/10.1007/s10973-015-5167-y
  8. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants vol.132, pp.3, 2018, https://doi.org/10.1007/s10973-018-7160-8