Preparation of Energetic Metal Particles and Their Stabilization

에너제틱 금속입자 제조 및 안정화 기술

  • Lee, Hye Moon (Powder Technology Department Korea Institute of Materials Science) ;
  • Kim, Kyung Tae (Powder Technology Department Korea Institute of Materials Science) ;
  • Yang, Sangsun (Powder Technology Department Korea Institute of Materials Science) ;
  • Yu, Ji-Hun (Powder Technology Department Korea Institute of Materials Science) ;
  • Kim, Yong-Jin (Powder Technology Department Korea Institute of Materials Science)
  • 이혜문 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 김경태 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 양상선 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 유지훈 (한국기계연구원 부설 재료연구소 분말기술연구실) ;
  • 김용진 (한국기계연구원 부설 재료연구소 분말기술연구실)
  • Published : 2013.09.30


Oxidations of metal generate large quantity of thermal and light energies but no toxic pollutants, so that metals with high calorific values, such as beryllium, boron, aluminum, magnesium, and lithium, are possible to be used as clean fuels instead of fossil fuels. However, they are so explosive due to very high oxidation rates that they should be stabilized by their surface passivation with oxides, organics and inorganics. For reasonable use of energetic metal particles as solid fuel, therefore, some detail information, such as thermal properties, preparation and passivation methods, and application area, of the energetic metals is introduced in this manuscript.


  1. Agrawal, J., (1998). Recent trends in high energy materials, Progress in Energy and Combustion Science 24(1), 1-30.
  2. Chung, S. W., Guliants, E. A., Bunker, C. E., Hammerstroem, D. W., Deng, Y., Burgers, M. A., Jelliss, P. A., and Buckner, S. W. (2009). Capping and passivation of aluminum nanoparticles using alkyl-substituted epoxides, Langmuir 25(16), 8883-8887.
  3. Dreizin, E., (2003) Effect of phase changes on metal particle combustion processes, Combustion Science and Shock Waves 39(6), 92-96.
  4. Dreizin, E., (2006). Phase changes in metal combustion, Progress in Energy and Combustion Science 26(1), 57-78.
  5. Dreizin, E., (2009). Metal-based reactive nanomaterials, Progress in Energy and Combustion Science 35(2), 141-167.
  6. Dreizin, E. L., Berman, C. H., and Vicenzi, E. P. (2000). Condensed-phase modifications in magnesium particle combustion in air, Scripta Materialia 122(1), 30-42.
  7. Foley, T. J., Johnson, C. E., and Higa, K. T. (2005). Inhibition of oxide formation on aluminum nanoparticles by transition metal coating, Chemistry of Materials 17(16), 4086-4091.
  8. Gromov, A. A., Forter-Barth, U., Teipel, U. (2006). Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water, Powder Technology 164, 111-115
  9. Haber, J.A. and Buhro, W.E. (1998) Kinetic instability of nanocrystalline aluminum prepared by chemical synthesis; Facile room-temperature grain growth, Journal of American Chemical Society 120, 10847-10855
  10. Jouet, R., Warren, A., Rosenberg, D., Bellitto, V., Park, K., and Zachariah, R. M., (2005). Surface passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids, Chemistry of Materials 17(11), 2987-2996
  11. Jouet, R., Carney, J., Granholm, R., Sandusky, H., Warren A., (2006). Preparation and reactivity analysis of novel perfluoroalkyl coated aluminum nanocomposites, Materials Science and Technology 22(4), 422-429
  12. Kim. J. H., Koo, H. Y., Hong, S.K., Han, J. M., Jang, H. C., Y. N. Ko, Hong, Y. J., Kang, Y. C., Kang, S. H., and Cho, S. B. (2012). Combustion characteristics of the heat pellet prepared from the Fe powders obtained by spray pyrolysis, Advanced Powder Technology 23(3), 387-392
  13. Lee, H. M. (2012) Particle technology for printed electronics, Journal of the KSME 5, 51-55
  14. Lee, H. M., Choi, S.-Y., and Yun, J.-Y. (2011). Preparation of aluminum-organic nanocomposite materials via wet chemical process, Advanced Powder Technology 22(5), 608-612
  15. Lee, H. M., Choi. S.-Y., Kim, K. T., Yun, J.-Y., Jung, D.-S., Park, S. B., and Park, J. (2011) A novel solution-stamping process for preparation of a highly conductive aluminum film, Advanced Materials 23, 5524-5528
  16. Lee. H. M., Choi, S.-Y., and Jung A. (2013) Direct deposition of highly conductive aluminum thin film on substrate by solution-dipping process, ACS Applied Materials and Interfaces 5, 4581-4585
  17. Lee. H. M., Choi, S.-Y., Jung A., and Ko, S. H. (2013) Highly conductive aluminum textile and paper for flexible and wearable electronics, Angewandte Chemie International Eidtion 52, 7718-7723
  18. Lee. H. M., Lee., H. B., Jung, D. S., Yun, J.-Y., Ko, S. H., and Park. S. B. (2012) Solution processed aluminum paper for flexible electronics, Langmuir 28, 13127-13135
  19. Lee, H. M. and Yun, J.-Y. (2011). Preparation of Aluminum-Oleic Acid Nano-Composite for Application to Electrode for Si Solar cells, Materials Transactions 52(6), 1222-1227
  20. Oganov, A. R., Chen, J., Gatti, C., Ma, Y., Ma, Y., Glass, C. W., Liu, Z., Yu, T., Kurakevych, O. O., and Slolozhenko, V. L. (2009) Ionic high-presure form of elemental boron, Nature 457(12), 863-867
  21. Park. K., Rai, A., and Zachariah, M. R. (2006). Characterizing the coating and size-resolved oxidative stability of carbon-cated aluminum nanoparticles by single-particle mass-spectrometry, J. Nanoparticle Research 8, 455-464
  22. Puchta, R., (2011). A brighter beryllium, Nature Chemistry 5, 416
  23. Sun, Y. L., (2009) Research progress on Al-water propulsion system, AIAA, 5038
  24. Tuoriniemi, J., Juntunen-Nurmilaukas, K., Uusvuori, J., Pentti, E., Salmela, A., and Sebedash, A. (2007). Superconductivity in lithium below 0.4 millikelvin at ambient pressure, Nature 447 187-189