Evaluation of Environmental Impact with Application of the Life Cycle Assessment Method to Swine Waste Treatment Systems

가축분뇨 처리 시스템에 대한 전과정평가 방법을 적용한 환경영향 평가

  • Shin, Joungdu (Department of Climate Change&agro-ecology, National Academy of Agricultural Science, RDA) ;
  • Lee, Sun-Ill (Department of Climate Change&agro-ecology, National Academy of Agricultural Science, RDA) ;
  • Park, Wu-Kyun (Department of Climate Change&agro-ecology, National Academy of Agricultural Science, RDA) ;
  • Hong, Seung-Gil (Department of Climate Change&agro-ecology, National Academy of Agricultural Science, RDA) ;
  • Choi, Yong-Su (Department of Climate Change&agro-ecology, National Academy of Agricultural Science, RDA)
  • 신중두 (국립농업과학원 기후변화생태과) ;
  • 이선일 (국립농업과학원 기후변화생태과) ;
  • 박우균 (국립농업과학원 기후변화생태과) ;
  • 홍승길 (국립농업과학원 기후변화생태과) ;
  • 최용수 (국립농업과학원 기후변화생태과)
  • Published : 2013.09.30


The application of the Life Cycle Assessment (LCA) methodology to analyze the environmental impact to different swine waste treatment systems was investigated. The first part of LCA is to organize an inventory of parameters and emissions released due to the system under investigation. In the following step of the Life Cycle Impact Assessment, the inventory data were analyzed and aggregated in order to finally get one index representing the total environmental burden. For the Life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact method. Two different swine waste treatment systems such as aerobic and anaerobic digestion systems were chosen as an example for the life cycle impact analysis. For establishing the parameters to be assessed the agricultural environmental effects to above swine waste treatment systems, it has been observed that there was high at T-P emission in anaerobic digestion system and $CO_2$ emission in aerobic digestion system. For Eco-indicator values per environmental effect for swine waste treatment systems related to one tonne of swine waste, it was shown that there was a negative index for global warm potential and soil acidification in aerobic digestion system, but relatively high positive index for eutrophication in anaerobic digestion system.

가축분뇨 처리시스템에 대한 환경영향을 분석하기 위하여 전과정 평가방법을 적용하였다. 전과정평가의 첫 번째 부분은 사용될 분석 항목을 구성하는 것으로, 가축분뇨 처리시스템에 대한 유입 및 배출에 대한 항목이다. 전과정 영향평가를 위한 다음 단계로서 전체 환경부하를 최종적으로 하나의 지수로 통합하기 위하여, 특정 항목에 대한 자료를 취합하고 분석하는 것이다. 전과정 영향평가를 위해, Eco-indicator 95 방법은 체계화 되었으며, 규칙적으로 적용된 영향평가 방법이기 때문에 선택하였다. 전과정 영향 분석을 위한 실례로서 호기 및 혐기소화 시스템과 같은 두 종류의 돈분 처리시스템을 선정하였다. 돈 분뇨 처리시스템에 대한 농업환경영향을 평가한 항목을 확립하였고, 혐기소화시스템에서는 전 인산 배출이 높았으며, 호기소화시스템에서는 이산화탄소 배출이 높은 것으로 관측되었다. 돈분 1ton을 처리하는데 관련된 돈분처리시스템에 대한 환경영향 평가에서 Eco-indicator 수치에 따르면, 호기소화 시스템에 있어 지구온난화 및 토양산성화에서 음의 지수를 보인 반면 혐기소화시스템은 수계 부영양화 부분에서 비교적 높은 양의 지수를 보였다.



  1. Ministry of Environment, "The state of solid waste generation and treatment in 2005". Seoul, Korea (2005).
  2. Ghosh, S., Conrad, J.R., Klass, D.L., "Anaerobic acidogenesis of wastewater sludge" Journal of Water Pollution Control Federation 47(1), pp.30-45 (1975).
  3. Hawkes, F.R. and Hawkes, D.L., "Anaerobic digestion". In: Bu'lock, J. Kristiansen, B.(Eds.), Basic Biotechnology, Academic Press, London, pp. 337-358 (1987).
  4. van Lier, J.B., Tilche, E., Ahring, B.K., Macarie, H., Moletta, R., Dohanyos, M., "New perspectives in anaerobic digestion". Water Science and Technology 43(1), pp.1-18 (2001).
  5. Callaghan, F.J., Wase, D.A.J., Thayanithy, K., Forster, C.F."Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure", Biomass and Bioenergy 27, pp. 71-77 (2002).
  6. Classen, P.A.M., van Lier, J.B., Lopez Contreras, A.M., van Niel E.W., Sijtsma, J., Stams, A.J.M., de Vries, S.S., Weusthuis, R.A., "Utilisation of biomass for the supply of energy carriers", Applied Microbiology and Biotechnology 52, pp. 741-755 (1999).
  7. Forordning(2001: 512)om deponering av avfall," http:/ /200105012htm". Date; 5/31/02, 2001.
  8. Hashimoto, A.G., "Conversion of straw-manure mixtures to methane at mesophilic and thermophilic temperatures". Biotechnology and Bioengineering. 25:185-200. (1983).
  9. Sunchez, E., Milan, Z., Borja, R. Weiland, P. and Rodriguez, X.."Piggery waste treatment by anaerobic digestion and nutrient removal by ionic exchange". Resources, Conservation and Recycling 15, pp. 235-244 (1995).
  10. Juteau, P., Tremblay, D., Ould-Moulaye, C.B., Bisaillon, J.G.,Beaudet, R., "Swine waste treatment by selfheating aerobic thermophilic bioreactors", Water Res. 38, 539-546(2004).
  11. Goedkoop, M., " NOH report 9523. the Eco-Indicator 95"Final report. Pre Consultants, Amersfoort (1995).
  12. Heijungs, R., " Environmental Life Cycle Assessment of Products(Ed)". Guide, OcTOBER, 1992. centrre of environmental Science, Leiden (1992a).
  13. Steen, B. and Ryding, S. O., "The EPS-Enviro- Accounting method, An application of environmental accounting principles for evaluation and valuation of environmental impact in product design", AFR Report II. AFR, Stock-holm (1993).
  14. ISO., "International Organization for standardization(ISO), Draft International standard ISO/DIS 14042 : Environmental management-Life cycle impact assessment". ISO, Geneva (1998).
  15. Hertwich, E. G. and Pease, W. S., "Letters to the Editor : O14042 Restricts Use and Development of Impact Assessment", Int. J. LCA 3, 180-181 (1998).
  16. Marsmann, M., Ryding, S. O., Udo de Haes, H., Fava, J., Owens, W., Brady, K., Saur, K. and Schench, R., "Letters to the Editors : In Reply to Hertwich and Pease, Int. J. LCA 3 (4), 180-181, "ISO 1402 Restricts Use and Development of Impact Assessment", Int. J. LCA 4, 65 (1999).
  17. Udo de Haes, H. A. and Jolliet, O., "How does ISO/Dis 14042 on Life Cycle Impact Assessment accommodate current best available particle", Int. J. LCA 4, p.75-80 (1999).
  18. Consoli, F.(Ed.), "Guidelines for Life Cycle Assessment : A 'Code of Practice'", Society of Environmental Toxicology and hemistry(SETAC), Brussel (1993).