DOI QR코드

DOI QR Code

Study on Cryogenic Behavior of Reinforced Polyurethane Foam for Membrane Type LNG Carrier

멤브레인 LNG 선박용 강화 폴리우레탄폼의 극저온 거동 연구

Jang, Cheol-Woong;Shim, Chun-Sik;Song, Ha-Cheol;Song, Chang Yong
장철웅;심천식;송하철;송창용

  • Received : 2012.11.11
  • Accepted : 2013.02.14
  • Published : 2013.02.28

Abstract

In the context of the structural performance of an LNG hold, the mechanical characteristics of the insulation material are considered to be a critical design factor under cryogenic temperatures. This paper presents the thermal elasto-plastic behavior of the reinforced polyurethane foam (RPUF) adapted for the insulation material of a membrane-type LNG carrier via both experiments and numerical simulations realizing the cryogenic condition. The experiments are carried out to investigate the thermal transfer and thermal elasto-plastic deformation characteristics of an actual RPUF specimen. The heat transfer simulations based on the finite element method (FEM) include a forced convection analysis. The results of heat transfer analyses are compared with the experimental results. Reasonable cryogenic conditions for RPUF are reviewed based on both the analysis and experimental results.

Keywords

LNG carrier;Thermal elasto-plastic behavior;Reinforced polyurethane foam (RPUF);Finite element method (FEM);Forced convection

References

  1. Choung, M., Shim, C.S., Kim, K.S., 2011. Plasticity and Fracture Behaviors of Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening. Journal of Ocean Engineering and Technology, 25 (2), 134-144. https://doi.org/10.5574/KSOE.2011.25.2.134
  2. Issa, J.A., Garza-Rios, L.O., Taylor, R.P., Lele, S.P., Rinehart, A.J., Bray, W.H., Tredennick, O.W., Canler, G., Chapot, K., 2009. Structural Capacities of LNG Membrane Containment Systems. Proceedings of the Nineteenth International Offshore and Polar Engineering Conference, Osaka, Japan.
  3. Lee, C.S., Kim, J.H., Kim, W.S., Noh, B.J., Choe, I.H., Kim, M.H., Lee, J.M., 2011. Evaluation of Sloshing Resistance Performance for LNG Carrier Insulation System using Fluid- Structure Interaction Analysis. Proceedings of Computational Structural Engineering Institute of Korea, Busan, Korea.
  4. Lee, J.H., Choi, W.C., Kim, M.H., Kim, W.S., Noh, B.J., Choe, I.H., Lee, J.M., 2007b. Experimental Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System. Journal of the Society of Naval Architects of Korea, 44(3), 296-304. https://doi.org/10.3744/SNAK.2007.44.3.296
  5. Lee, J.H., Kim, T.W., Kim, M.H., Kim, W.S., Noh, B.J., Choe, I.H., Lee, J.M., 2007a. Numerical Assessment of Dynamic Strength of Membrane Type LNG Carrier Insulation System. Journal of the Society of Naval Architects of Korea, 44(3), 305-313. https://doi.org/10.3744/SNAK.2007.44.3.305
  6. MSC software, 2010. MSC.NASTRAN User's Manual. MSC software, California.
  7. Park, W.S., Kang, K.Y․, Chun, M.S., Lee, J.M., 2011. A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures. Journal of the Society of Naval Architects of Korea, 48(3), 189-199. https://doi.org/10.3744/SNAK.2011.48.3.189
  8. Siegmann, A., Kenig, S., Alperstein, D., Narkis, M., 1983. Mechanical Behavior of Reinforced Polyurethane Foams. Polymer Composites, 4(2), 113-119. https://doi.org/10.1002/pc.750040206
  9. Yunus, A.C., 2003. Heat Transfer: A Practical Approach. Mc- Graw-Hill, New York.

Cited by

  1. Experimental Study on Correction of Thermal Conductivity Obtained by Heat Flow Method using Commercial Guarded Hot Plate Method Apparatus vol.29, pp.2, 2015, https://doi.org/10.5574/KSOE.2015.29.2.169
  2. Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System vol.30, pp.5, 2016, https://doi.org/10.5574/KSOE.2016.30.5.349

Acknowledgement

Supported by : 목포대학교