T Cells Development Is Different between Thymus from Normal and Intrauterine Growth Restricted Pig Fetus at Different Gestational Stage

  • Lin, Yan (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Wang, Junjun (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Wang, Xiaoqiu (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Wu, Weizong (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Lai, Changhua (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2012.03.09
  • Accepted : 2012.05.03
  • Published : 2013.03.01


This experiment was conducted to evaluate the development of T cells in intrauterine growth retarded (IUGR) piglets at different gestational stages, and tentatively explore the relationship between T cells development and the Notch signaling pathway. A total of 18 crossbred (Landrace${\times}$Large white) primiparous sows were mated at similar weights and estruses and euthanized at d 60, 90 and 110 of gestation with six replicates for each time point. One IUGR and one normal fetus were picked from each litter. The T-cell subsets, mRNA expression of Delta-like1, Delta-like4, Jagged1, and Notch2 genes in the thymus were investigated. Compared to normal piglets, $CD3^+CD4^-CD8^+$ cells in IUGR fetuses at d 90 was 0.13% lower (p<0.05). At d 110 of gestation $CD8^+$ T cells in IUGR fetuses was 0.19% lower (p<0.05). The percentage of $CD8^+$ T cells was 3.14% lower (p<0.05) of the total T cells in IUGR pigs at d 60. The abundance of Notch2 and Delta-like4 mRNA at d 110 was 20.93% higher and 0.77% (p<0.05) lower, and Delta-like1 mRNA at d 90 was 0.19% (p<0.05) higher compared to normal pigs. These results suggested that normal fetuses had a greater proportion of T-cell subsets at earlier gestation periods, and the Notch signaling pathway was likely partially responsible for these differences to some degree.


Intrauterine Growth Retardation;T Cell Development;Immunity;Notch Signaling;Pig Fetus


  1. Azzam, S. M., J. E. Kinder, M. K. Nielsen, L. A. Werth, K. E. Gregory, L. V. Cundiff and R. M. Koch. 1993. Environmental effects on neonatal mortality of beef calves. J. Anim. Sci. 71: 282-290 R.
  2. Chandra, P. K. 1975. Fetal malnutrition and postnatal immunocompetence. AJDC 129:450-454.
  3. Costa, D. L., A. Six, E. Fazilleau, N. Mascarell, L. Legrand, N. Mailhé, M. P. Cumano, A. Laâbi and A. A. Y. Freitas. 2005. In vivo and in absence of a thymus, the enforced expression of the Notch ligands Delta-1 or Delta-4 promotes T cell development with specific unique effects. J. Immunol. 174:2730-2737.
  4. Dacasto, M., E. Cornaglia, C. Nebbia and E. Bollo. 2001. Triphenyltin acetate-induced cytotoxicity and $CD^{4+}$ and $CD^{8+}$ depletion in mouse thymocyte primary cultures. Toxicology 169:227-238.
  5. Ferguson, A. C., G. J. Lawlor, C. G. Neumann, W. Oh and E. R. Stiehm. 1974. Decreased rosette forming lymphocytes in malnutrition and intrauterine growth retardation. J. Pediatr. 85:717-723.
  6. Hozumi, K., C. Mailhos, N. Negishi, K. Hirano, T. Yahata, K. Ando, S. Zuklys, G. A. Holländer, D. T. Shima and S. Habu, 2008. Delta-like4 is indispensable in thymic environment specific for T cell development. J. Exp. Med. 205:2507-2513.
  7. Jaleco, A. C., H. Neves, E. Hooijberg, P. Gameiro, N. Clode, M. Haury, D. Henrique and L. Parreira. 2001. Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J. Exp. Med. 194:991-1001.
  8. Jiménez, E., A. Vicente, R. Sacedón, J. J. Muñoz, G. Weinmaster, A. G. Zapata and A. Varas. 2001. Distinct mechanisms Contribute to generate and change the CD4:CD8 cell ratio during thymus development: a role for the Notch ligand, Jagged1. J. Immunol. 166:5898-5908.
  9. Lefort, N., C. Benne, J. D. Lelièvre, C. Dorival, M. Balbo, S. Sakano, L. Coulombel and Y. Lévy. 2006. Short exposure to Notch ligand Delta-4 is sufficient to induce T-cell potential of primary human $CD34^{+}$ cells. Exp. Haematol. 34:1720-1729.
  10. Lin, Y., J. J. Wang, X. Q. Wang, W. Z. Wu and C. H. Lai. 2009. The development of T lymphocytes in intrauterine growth retardation piglets. Chinese J. Anim. Sci. 21:13-15.
  11. Maekawa, Y., S. Tsukumo, S. Chiba, H. Hirai, Y. Hayashi, H. Okada, K. Kishihara and K. Yasutomo. 2003. Delta1-Notch3 interactions bias the functional differentiation of activated $CD4^{+}$ T cells. Immunity 19:549-559.
  12. Manerikar, S. S., A. N. Malaviya, M. B. Singh, P. Rajgopalan and R. Kumar. 1976. Immune status and BCG vaccination in new -borns with intrauterine growth retardation. Clin. Exp. Immunol. 26:173-175.
  13. McDade, T. W., M. A. Beck, C. W. Kuzawa and L. S. Adair. 2001. Prenatal undernutrition and postnatal growth are associated with Adolescent thymic function. J. Nutr. 131:1225-1231.
  14. Mussi-Pinhata, M. M., A. L. Goncalves and N. T. Foss. 1993. BCG vaccination of full-term infants with chronic intrauterine malnutrition influence of immunization age on development of post-vaccination, delayed tuberculin hypersensitivity. Bull. World Health Organ. 71:41-49.
  15. Neumann, C. G., E. R. Stiehm, J. Zahradnick, C. Newton, H. Weber, M. E. Swendseid, J. D. Cherry and J. M. Camey. 1998. Immune function in intrauterine growth retardation. Nutr. Res. 18:201-224.
  16. Patel, E., B. Wang, L. Lien, Y. Wang, L. J. Yang, J. S. Moreb and L. J. Chang. 2009. Diverse T-cell differentiation potentials of human fetal thymus, fetal liver, cord blood and adult bone marrow CD34 cells on lentiviral Delta-like-1-modified mouse stromal cells. Immunology 128:497-505.
  17. Rosenberg, A. 2008. The IUGR newborn. Semin. Perinatol. 32: 219-224.
  18. Saito, T., S. Chiba, M. Ichikawa, A. Kunisato, T. Asai, K. Shimizu, T. Yamaguchi, G. Yamamoto, S. Seo, K. Kumano, E. Nakagami-Yamaguchi, Y. Hamada, S. Aizawa and H. Hirai. 2003. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18:675-685.
  19. Schmitt, T. M. and J. C. Zuniga-Pflücker. 2002. Induction of T cell development from hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 17:749-756.
  20. Van Rens, B. T. T. M., G. D. Koning, R. Bergsma and T. van derLende. 2005. Preweaning piglet mortality in relation to placental efficiency. J. Anim. Sci. 83:144-151.
  21. Wang, J., L. Chen, D. Li, Y. Yin, X. Wang, P. Li, L. J. Dangott, W. Hu and G. Wu. 2008. Intrauterine growth restriction affects the proteomes of the small intestine, liver, and skeletal muscle in newborn pigs. J. Nutr. 138:60-66.
  22. Williams, R. L., R. K. Creasy, G. C. Cunningham, W. E. Hawes, F. D. Norris and M. Tashiro. 1982. Fetal growth and perinatal viability in California. Obstet. Gynecol. 59:624-632.
  23. Witt, C. M., V. Hurez, C. S. Swindle, Y. Hamada and C. A. Klug. 2003. Activated Notch2 potentiates CD8 lineage maturation and promotes the selective development of B1 B cells. Mol. Cell Biol. 23:8637-8650.
  24. Wolfer, A., A. Wilson, M. Nemir, H. R. MacDonald and F. Radtke. 2002. Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta lineage thymocytes. Immunity 16:869-879.
  25. Wu, G., F. W. Bazer, J. M. Wallace and T. E. Spencer. 2006. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84:2316-2337.

Cited by

  1. Nutritional support for low birth weight infants: insights from animal studies vol.117, pp.10, 2017,