DOI QR코드

DOI QR Code

Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese (Anser anser domestica) Gene Expression

  • Ji, Hong (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wang, Jianfa (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Liu, Juxiong (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Guo, Jingru (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Wang, Zhongwei (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Zhang, Xu (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Guo, Li (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University) ;
  • Yang, Huanmin (College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University)
  • Received : 2012.08.05
  • Accepted : 2012.09.10
  • Published : 2013.03.01

Abstract

Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don't know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), ${\beta}$-actin (ACTB), ${\beta}$-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese.

Keywords

Reference Genes;Real-time qRT-PCR;Zi Geese;Gene Expression

References

  1. Andersen, C. L., J. L. Jensen and T. F. Orntoft. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64:5245-5250. https://doi.org/10.1158/0008-5472.CAN-04-0496
  2. Arya, M., I. S. Shergill, M. Williamson, L. Gommersall, N. Arya and H. R. Patel. 2005. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 5:209-219. https://doi.org/10.1586/14737159.5.2.209
  3. Beekman, L., T. Tohver, R. Dardari and R. Leguillette. 2011. Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. BMC. Mol. Biol. 12:5. https://doi.org/10.1186/1471-2199-12-5
  4. Bustin, S. A., V. Benes, T. Nolan and M. W. Pfaffl. 2005. Quantitative real-time RT-PCR-a perspective. J. Mol. Endocrinol. 34:597-601. https://doi.org/10.1677/jme.1.01755
  5. Bustin, S. A., V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, R. Mueller, T. Nolan, M. W. Pfaffl, G. L. Shipley, J. Vandesompele and C. T. Wittwer. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55:4611-4622.
  6. Chen, L. R., C. H. Chao, C. F. Chen, Y. P. Lee, Y. L. Chen and Y. L. Shiu. 2007. Expression of 25 high egg production related transcripts that identified from hypothalamus and pituitary gland in red-feather Taiwan country chickens. Anim. Reprod. Sci. 100:172-185. https://doi.org/10.1016/j.anireprosci.2006.07.005
  7. Ding, S. T., C. F. Yen, P. H. Wang, H. W. Lin, J. C. Hsu and T. F. Shen. 2007. The differential expression of hepatic genes between prelaying and laying geese. Poult. Sci. 86:1206-1212. https://doi.org/10.1093/ps/86.6.1206
  8. Fernandes, J. M. O., M. Mommens, O. Hagen, I. Babiak and C. Solberg. 2008. Selection of suitable reference genes for real- time PCR studies of Atlantic halibut development. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150:23-32. https://doi.org/10.1016/j.cbpb.2008.01.003
  9. Huggett, J., K. Dheda, S. Bustin and A. Zumla. 2005. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6:279-284. https://doi.org/10.1038/sj.gene.6364190
  10. Janovick-Guretzky, N. A., H. M. Dann, D. B. Carlson, M. R. Murphy, J. J. Loor and J. K. Drackley. 2007. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary treatment. J. Dairy Sci. 90:2246-2252. https://doi.org/10.3168/jds.2006-640
  11. Jin, P., Y. D. Zhao, Y. Ngalame, M. C. Panelli, D. Nagorsen, V. Monsurro, K. Smith, V. Hu, H. Su, P. R. Taylor, F. M. Marincola and E. Wang. 2004. Selection and validation of endogenous reference genes using a high throughput approach. BMC. Genomics 5:55. https://doi.org/10.1186/1471-2164-5-55
  12. Kang, B., J. R. Guo, H. M. Yang, R. J. Zhou, J. X. Liu, S. Z. Li and C. Y. Dong. 2009. Differential expression profiling of ovarian genes in prelaying and laying geese. Poult. Sci. 88: 1975-1983. https://doi.org/10.3382/ps.2008-00519
  13. Kuhnlein, U., L. Ni, D. Zadworny, S. Weigend, J. S. Gavora and W. Fairfull. 1997. DNA polymorphisms in the chicken growth hormone gene: response to selection for disease resistance and association with egg production. Anim. Genet. 28:116-123. https://doi.org/10.1111/j.1365-2052.1997.00076.x
  14. McCurley, A. T. and G. V. Callard. 2008. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC. Mol. Biol. 9:102. https://doi.org/10.1186/1471-2199-9-102
  15. O'Connell, J. 2002. RT-PCR protocols. Meth. in Mol. Biol. Humana. Press Inc., Totowa, NJ, USA. 193, 84.
  16. Overgard, A. C., A. H. Nerland and S. Patel. 2010. Evaluation of potential reference genes for real time RT-PCR studies in Atlantic halibut (Hippoglossus Hippoglossus L.); during development, in tissues of healthy and NNV-injected fish, and in anterior kidney leucocytes. BMC. Mol. Biol. 11:36. https://doi.org/10.1186/1471-2199-11-36
  17. Pfaffl, M. W. and M. Hageleit. 2001. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 23:275-282. https://doi.org/10.1023/A:1005658330108
  18. Pfaffl, M. W., A. Tichopad, C. Prgomet and T. P. Neuvians. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26:509-515. https://doi.org/10.1023/B:BILE.0000019559.84305.47
  19. Scholz1, B., K. Kultima1, A. Mattsson, J. Axelsson, B. Brunström, K. Halldin, M. Stigson and L. Dencker. 2006. Sex-dependent gene expression in early brain development of chicken embryos. BMC Neurosci. 7:12. https://doi.org/10.1186/1471-2202-7-12
  20. Shi, Z. D., T. B. Tian, W. Wu and Z. Y. Wang. 2008. Controlling reproductive seasonality in the geese: a review. World Poult. Sci. J. 64:343-355.
  21. Shu, G., J. Chen, Y. D. Ni, Y. C. Zhou and R. Q. Zhao. 2004. Isolatin and expression of novel exp ressed sequence tags (ESTs) from ovarian follicles of shaoxing ducks. Acta Genet. Sin. 31:1095-1102.
  22. Stahlberg, A., J. Hakansson, X. J. Xian, H. Semb and M. Kubista. 2004. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 50:509-515. https://doi.org/10.1373/clinchem.2003.026161
  23. Sturzenbaum, S. R. and P. Kille. 2001. Control genes in quantitative molecular biological techniques: the variability of invariance. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 130:281-289. https://doi.org/10.1016/S1096-4959(01)00440-7
  24. Vandesompe, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De, Paepe and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:1-12.
  25. Wen, J. R. and D. L. Mao. 2007. Actin, a reliable marker of internal control? Clin. Chim. Acta. 385:1-5. https://doi.org/10.1016/j.cca.2007.07.003
  26. Yen, C. F., H. W. Lin, J. C. Hsu, C. Lin, T. F. Shen and S. T. Ding. 2006. The expression of pituitary gland genes in laying geese. Poult. Sci. 85:2265-2269. https://doi.org/10.1093/ps/85.12.2265

Cited by

  1. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0141853
  2. Reference gene selection for the shell gland of laying hens in response to time-points of eggshell formation and nicarbazin vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0180432
  3. Identification of reference genes for qRT-PCR in granulosa cells of healthy women and polycystic ovarian syndrome patients vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07346-x
  4. Reference gene selection for reverse transcription quantitative polymerase chain reaction in chicken hypothalamus under different feeding status pp.09312439, 2017, https://doi.org/10.1111/jpn.12690