광양만권 주변지역 주민들의 대기오염 노출추정을 위한 방법론 비교 연구

DOI QR코드

DOI QR Code

정순원;조용성;양원호;유승도;손부순
Jung, Soon-Won;Cho, Yong-Sung;Yang, Won-Ho;Yu, Seung Do;Son, Bu-Soon

  • 투고 : 2012.07.30
  • 심사 : 2013.01.31
  • 발행 : 2013.02.28

초록

The assessment of personal exposure is a critical component in population-based epidemiologic studies of air pollution. This study was conducted to apply and compare the four exposure estimation methods of individual-level to air pollution concentration in a cohort including 2,283 subjects in Gwangyang, Korea. Individual-level exposure of air pollution were estimated using multiple approaches, including average across all monitors, nearest monitor, and spatial interpolation by inverse distance weighting and kriging. The mean concentrations of $PM_{10}$, $NO_2$, $SO_2$, CO, $O_3$ by four exposure estimation methods were slightly different but not significantly different from each other. Cross-validation showed that kriging was more accurate than other exposure estimation methods because kriging has probably predicted individual exposure levels equivalent to residential locations after estimating the parameters of a model according to the spatial surface of air pollution concentration. These data support that spatial interpolation methods may provide better estimates than selecting the value from the nearest monitor and averaging across values from all monitors by reflecting spatial attributes of air pollution on personal level.

키워드

Air pollution;Cross-validation;Estimation method;Interpolation method

참고문헌

  1. Bell, M. L., 2006, The use of ambient air quality modeling to estimate individual and population exposure for human health research: A case study of ozone in the Northern Georgia Region of the United States, Environ. Int., 32, 586-593. https://doi.org/10.1016/j.envint.2006.01.005
  2. Eum, K. D., 2008, Spatial and temporal assessment of air pollution exposure and its health effects, Ph. D. Dissertation, Seoul National University.
  3. Finkelstein, M. M., Jerrett, M., Deluca, P., Finkelstein, N., Verma, D. K., Chapman, K., Sears, M. R., 2003, Relation between income, air pollution and mortality : a cohort study, Can. Med. Assoc. J., 169, 397-402.
  4. Firket, J., 1936, Fog Along the Meuse Valley, Trans. Faraday Soc., 32, 1192-1197. https://doi.org/10.1039/tf9363201192
  5. Han, D. K., Hwang, S. S., 2011, Spatial epidemiology and environmental health : On the use of spatially referenced health and environment data, J. Env. Health Sci., 1, 1-11.
  6. Kim, S. Y., Sheppard, L., Kim, H., 2009, Health effects of long-term air pollution, influence of exposure prediction methods, Epidemiology, 20, 442-450. https://doi.org/10.1097/EDE.0b013e31819e4331
  7. Kinney, P. L., Aggarwal, M., Nikiforov, S. V., Nadas, A., 1998, Methods development for epidemiologic investigations of the health effects of prolonged ozone exposure. Part III: an approach to retrospective estimation of lifetime ozone exposure using a questionnaire and ambient monitoring data (US sites), Health Effects Inst. Res. Rep., 81, 79-107.
  8. Kunzli, N., Lurman, F., Segal, M., Ngo, L., Balmes, J., Tager, I., 1997, Association between lifetime ambient ozone exposure and pulmonary function in college freshmanresults of a pilot study, Environ. Res., 72, 8-23. https://doi.org/10.1006/enrs.1996.3687
  9. Liao, D., Peuquet, D. J., Duan, Y., Whitsel, E. A., Dou, J., Smith, R. L., Lin, H. M., Chen, J. C., Heiss, G., 2006, GIS approaches for the estimation of residential- level ambient pm concentrations, Environ. Health Perspect., 114, 1374-1380. https://doi.org/10.1289/ehp.9169
  10. Ministry of Health, 1954, Mortality and Morbidity during the London fog of December 1952, Reports on Public Health and Medical Subjects No. 95, London Ministry of Health, London.
  11. Pikhart, H., Bobak, M., Gorynski, P., Wojtyniak, B., Danova, J., Celko, M. A., Kriz, B., Briggs, D., Elliott, P., 2001, Outdoor sulphur dioxide and respiratory symptoms in Czech and Polish school children: a small-area study, Int. Arch. Occup. Environ. Health, 74(8), 574-578. https://doi.org/10.1007/s004200100266
  12. Sarnat, S. E., Klein, M., Sarnat, J. A., Flanders, W. D., Waller, L. A., Mulholland, J. A., Russell, A. G., Tolbert, P. E., 2010, An examination of exposure measurement error from air pollutant spatial variability in time-series studies, J. Expo. Sci. Environ. Epidemiol., 20, 135-146. https://doi.org/10.1038/jes.2009.10
  13. Schrenk, H., Heimann, H., Clayton, G., Gafafer, W., Wexler, H., 1949, Air Pollution in Donora, PA: Epidemiology of the Unusual Smog Episode of October 1948, Preliminary Report, Public Health Bulletin No. 306, U.S. Public Health Service, Washington, DC.
  14. Son, J. Y., Kim, Y. S., Cho, Y. S., Lee, J. T., 2009, Prediction Approaches of Personal Exposure from Ambient Air Pollution Using Spatial Analysis : A Pilot Study Using Ulsan Cohort Data, J. Kor. Soc. Atmos. Environ., 4, 339-346. https://doi.org/10.5572/KOSAE.2009.25.4.339
  15. Son, J. Y., Bell, M. L., Lee, J. T., 2010, Individual exposure to air pollution and lung function in Korea: Spatial analysis using multiple exposure approaches, Environ. Res., 110, 739-749. https://doi.org/10.1016/j.envres.2010.08.003
  16. Wilson, J. G., Kingham, S., Sturman, A. P., 2006, Intraurban variations of $PM_{10}$ air pollution in Christchurch, New Zealand: implications for epidemiological studies, Sci. Total Environ., 367, 559-572. https://doi.org/10.1016/j.scitotenv.2005.08.045
  17. Wong, D. W., Yuan L., Perlin S. A., 2004, Comparison of spatial interpolation methods for the estimation of air quality data, J. of Ex. Anal. and Env. Epi., 14, 404-415. https://doi.org/10.1038/sj.jea.7500338

과제정보

연구 과제 주관 기관 : 국립환경과학원