Thermo-Field emission in silicon nanomembrane ion detector for mass spectrometry

실리콘 나노 박막의 열-전계 방출효과를 이용한 분자 질량분석

  • Park, Jong-Hoo (Department of Electrical Engineering, Kyungpook National University)
  • 박종후 (경북대학교 IT대학 전기공학과)
  • Received : 2013.10.16
  • Accepted : 2013.10.17
  • Published : 2013.12.30


This paper describes the characteristics of thermo-field emission in a freestanding silicon nanomembrane under ion bombardment with various thermal and field conditions. The thermal effect and field effect in thermo-field emission in silicon nanomembrane are investigated by varying kinetic energy of ions and electric field applied to the silicon nanomembrane surface, respectively. We found that thermo-field emission increases linearly as the electric field increases, when the electric field intensity is lower than the threshold. The thermo-field emission (schottky effect) increases proportionally to the power of temperature, which agree well with the predictions of a thermo-field emission model.

본 연구에서는 가속된 이온이 전기장이 걸려있는 freestanding 단결정 실리콘 나노 박막에 충돌했을 때 발생하는 열-전계 전자 방출 특성을 여러 전계 및 열적 조건 아래 체계적으로 분석하였다. 이온 충돌에 의한 열-전계 전자 방출은 쇼트키 효과 (schottky effect)의 선형영역의 특성에 의해 예측된 바와 같이 전계의 세기가 증가할수록 선형적으로 증가했으며, 이온 충돌에 의해 발생하는 열에너지의 제곱에 비례하는 특성을 보여주었다. 이러한 특성들은 실리콘 나노 박막의 질량 분석기용 이온 검출기로의 사용 가능성을 보여준다.



Supported by : 경북대학교


  1. Wiley, W.C.; Mclaren, I.H. Rev. Sci.Instrum. 26, 1150 (1955)
  2. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry, Rapid commun. Mass Spectrom. 2, 151 (1988)
  3. Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. Chem. 60, 2299 (1988)
  4. Fenn, J. B.; Mann, M; Meng, C. K.; and Wong, S. F. Electrospray ionization for mass spectrometry of large biomolecules, Science, 246, 64 (1989)
  5. Geno, P. W. Ion Detection in MS, in Mass Spectrometry in the Biological Sciences: a Tutorial, Kluwer Academic Publ., Netherlands (1992)
  6. Geno, P. W. and Macfarlane, R. D. Secondary electron emission induced by impact of low velocity molecular ions on a microchannel plate, Int. J. Mass Spectrom. Ion Processes, 92, 195 (1989)
  7. Westmacott, G.; Frank, M.; Labov, S. E. and Benner, W. H. Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions, Rapid Commun. Mass Spectrom., 14, 1854 (2000)<1854::AID-RCM102>3.0.CO;2-M
  8. Westmacott, G.; Ens, W. and Standing, K. G. Secondary ion and electron yield measurements for surfaces bombarded with large molecular ions, Nucl. Instrum. Methods Phys. Res., Sect. B, 108, 282 (1996)
  9. Beuhler, R. J. and Friedman, L. Threshold studies of secondary emission induced by macro-ion impact on solid surfaces, Nucl. Instrum. Methods, 170, 309 (1980)
  10. Meier, R. and Eberhardt, P. Velocity and ion species dependence of the gain of microchannel plates, Int. J. Mass Spectrom. Ion Processes, 123, 19 (1993)
  11. Hilton, G. C.; Martinis, J. M.; Wollman, D. A.; Irwin, K. D.; Dulcie, L. L.; Gerber, D.; Gillevet, P. M.; Twerenbold, D. Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters, Nature, 391, 672 (1998)
  12. Twerenbold, D.; Gerber, D.; Gritti, D.; Gonin, Y.; Netuschill, A.; Rossel, F.; Schenker, D.; Vuilleumier, J. L. Single molecule detector for mass spectrometry with mass independent detection efficiency, Proteomics, 1, 66 (2001)<66::AID-PROT66>3.0.CO;2-S
  13. Esposito, E.; Cristiano, R.; Pagano, S.; Perez de Lara, D.; Twerenbold, D. Fast Josephson cryodetector for time of flight mass spectrometry, Physica C, 372/376, 423 (2002)
  14. Park, J. Field emission from free-standing nanomembrane for high energy ion detection, JKMS, 21, 163 (2011)
  15. Murphy, E. L.; Good, H. R. Thermionic emission, Field emission, and the transition region, Phys. Rev., 102, 1464 (1956)