Prediction of Residual Layer Thickness of Large-area UV Imprinting Process

대면적 UV 임프린팅 공정에서 잔류층 두께 예측

  • Kim, Kug Weon (Department of Mechanical Engineering, Soonchunhyang University)
  • 김국원 (순천향대학교 공과대학 기계공학과)
  • Received : 2013.06.03
  • Accepted : 2013.06.17
  • Published : 2013.06.30


Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.


  1. Chou, S. and Krauss, P., "Imprint lithography with sub-10nm feature size and high throughput," Microelectronic Engineering., Vol. 35, pp. 237-240, 1997.
  2. Guo, L. J., "Recent progress in nanoimprint technology and its applications," J. Phys. D: Appl. Phys., Vol. 37, pp. R123-R141, 2004.
  3. Kim, N. W., Kim, K. W., and Sin, H.-C., "Finite element analysis of low temperature thermal nanoimprint lithography using a viscoelastic model," Microelectronic Engineering., Vol. 85, pp. 1858-1865, 2008.
  4. Kim, N. W., Kim, K. W., and Sin, H.-C., "A mathematical model for slip phenomenon in a cavityfilling process of nanoimprint lithography," Microelectronic Engineering., Vol. 86, pp. 2324-2329, 2009.
  5. Heyderman, L. J., Schift, H., David, C., Gorbrecht, J., and Schweizer, T., "Flow behaviour of thin polymer films used for hot embossing lithography," Microelectronic Engieering, Vol. 54, pp. 229-245, 2000.
  6. Ahn, S. H. and Guo, L. J., "High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates," Advanced Materials, Vol. 20, pp. 2044-2049, 2008.
  7. Kim, N. W., Kim, K. W., and Lee, W. Y., "Pressure distribution by rubber roller in large-area UV imprinting lithography Process," Journal of the Semiconductor & Display Technology, Vol. 9, No. 2, pp. 91-96, 2010.
  8. Cho, Y. T. and Jung, Y.-G., "A study on the expectation of residual layer thickness in roller pressing imprint process," Journal of the Korean Society of Manufacturing Process Engineers, Vol. 12, No. 1, pp.104-109, 2013.
  9. Budynas, R. G., "Advanced strength and applied stress analysis," McGraw-Hill, 1977.
  10. Kim, K. W. and Kim, N. W., "Prediction of strain energy function for butyl rubbers," Transactions of the Korean Society of Mechanical Engineers A, Vol. 30, pp. 1227-1234, 2006.