DOI QR코드

DOI QR Code

Synthesis of Multi Hydroxyl Chain-End Functionalized Polyolefin Elastomer with Poly(t-butylstyrene) Graft

Poly(t-butylstyrene) 그라프트를 가지는 수산기 말단 관능화 폴리올레핀 탄성체의 합성

  • Lee, Hyoung Woo (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Cho, Hee Won (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Lee, Sang Min (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Park, Sat Byeol (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University) ;
  • Kim, Dong Hyun (Covergent Technology R&D Department, Korea Institute of Industrial Technology) ;
  • Lee, Bum Jae (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
  • 이형우 (충남대학교 정밀응용화학과) ;
  • 조희원 (충남대학교 정밀응용화학과) ;
  • 이상민 (충남대학교 정밀응용화학과) ;
  • 박샛별 (충남대학교 정밀응용화학과) ;
  • 김동현 (한국생산기술연구원 융복합연구부문) ;
  • 이범재 (충남대학교 정밀응용화학과)
  • Received : 2012.11.29
  • Accepted : 2012.12.13
  • Published : 2013.03.31

Abstract

Polyolefin-g-poly(t-butylstyrene) as one of the high-temperature polyolefin-based thermoplastic elastomers was synthesized by the graft-from anionic living polymerization from the styrene moieties of the linear poly(ethylene-ter-1-hexene-ter-divinylbenzene) as a soft block to form the hard end blocks, poly(t-butylstyrene). The chemistry of the anionic graft-from polymerization involved complete lithiation of the pendant styrene unit of the soft polyolefin elastomer with sec-BuLi/TMEDA followed by the subsequent graft anionic polymerization of 4-tert-butylstyrene with Mn=10,000~30,000 g/mol. The graft-from living anionic polymerization were very effective and the grafting size increased proportionally with increasing monomer concentration and the reaction times. The synthetic methodology for the multi-hydroxyl chain-end modified polyolefin-g-poly(t-butylstyrene) was proposed by using the thiol-ene click reaction between 2-mercaptoethanol and the polyolefin-g-[poly(t-butylstyrene)-b-high vinyl polyisoprene], which was obtained from the subsequent living block copolymerization using polyolefin-g-Poly(t-butylstyrene) with isoprene. The result indicated that this process produced a new well-defined functionalized graft-type polyolefin-based TPE with high $T_g$ hard block(> $145^{\circ}C$).

Acknowledgement

Supported by : 지식경제부

References

  1. G. Holden, H. R. Kricheldorf, R. P. Quirk, Thermoplastic Elastomers, Hanser, Munich (2004).
  2. T. C. Chung, Polym. Sci., 27, 39 (2002).
  3. H. L. Lu, T. C. Chung, J. Polym. Sci., part A: Polym. Chem. Ed., 37, 4176 (1999). https://doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4176::AID-POLA17>3.0.CO;2-O
  4. R. E. Cunningham, J. Appl. Polym. Sci., 22, 2907 (1978). https://doi.org/10.1002/app.1978.070221017
  5. K. Imaizumi, T. Ono, I. Natori, S. Sakurai, K. Takeda, J. Polym. Sci., Part B: Polym. Phys., 39, 13 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<13::AID-POLB20>3.0.CO;2-K
  6. V. M. Monroy, G. Guevara, I. Leon, A. Correa, and R. Herrera, Rubber Chemistry and Technology, 66, 588 (1993). https://doi.org/10.5254/1.3538331
  7. J. Y. Dong, H. Hong, T. C. Chung, H. C. Wang, S. Datta, Macromolecules, 36, 6000 (2003). https://doi.org/10.1021/ma021749s
  8. N. ten Brummmelhuis, C. Diehl, H. Schlaad, Macromolecules, 41, 9946 (2008). https://doi.org/10.1021/ma802047w
  9. J-F Lutz, H. Schlaad, Polymer, 49, 817 (2008) https://doi.org/10.1016/j.polymer.2007.10.045
  10. A. B. Lowe, Polym. Chem., 1, 17 (2010). https://doi.org/10.1039/b9py00216b
  11. R. L. A. David, J. A. Kornfield, Macromolecules, 41, 1151 (2008). https://doi.org/10.1021/ma0718393