DOI QR코드

DOI QR Code

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE)

폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성

  • Yun, Ju-Ho (KATECH, Environmental Materials and Components R&D Center) ;
  • Yun, Jung-Hwan (KATECH, Environmental Materials and Components R&D Center) ;
  • Ha, Seong-Mun (KATECH, Environmental Materials and Components R&D Center) ;
  • Kim, Il (Pusan National University, Department of Polymer Engineering) ;
  • Sim, Sang-Eun (Inha University, Department of Chemical Engineering)
  • Received : 2013.01.18
  • Accepted : 2013.01.22
  • Published : 2013.03.31

Abstract

E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.

References

  1. S.K. De, A.K. Bhowmick, Thermoplastic Elastomers from Rubber-Plastic Blends (Horwood, New York, 1990).
  2. G. Holden, N.R. Legge, R.P. Quirk, Thermoplastic Elastomers (Hanser, Munich, 1996).
  3. A. Y. Coran and R. Patel, Rubber Chem. & Technol., 56, 1045 (1983). https://doi.org/10.5254/1.3538165
  4. S. George and S. Thomas, Polymer., 41, 1507 (2000). https://doi.org/10.1016/S0032-3861(99)00302-X
  5. S. George, K. Ramamurthy, J.S. Anand and G. Groeninckx, Polymer., 0, 4325 (1999).
  6. S. George, K.T. Varughese and S. Thomas, Polymer., 41, 5485 (2000). https://doi.org/10.1016/S0032-3861(99)00719-3
  7. S. George, R. Joseph, S. Thomas and K.T. Varughese, Polymer., 36, 4405 (1995). https://doi.org/10.1016/0032-3861(95)96846-Z
  8. S. George, NR. Neelakantan and K.T. Varughese, J. Polym. Sci. B: Polym Phys., 35, 2309 (1997). https://doi.org/10.1002/(SICI)1099-0488(199710)35:14<2309::AID-POLB11>3.0.CO;2-G
  9. S. George, L. Prasannakumari, P. Koshy, and K.T. Varughese S. Thomas, Materials Letters., 26, 51 (1996). https://doi.org/10.1016/0167-577X(95)00212-X
  10. S. George, R. Joseph and S. Thomas, J. Appl. polym. Sci. 57, 449 (1995). https://doi.org/10.1002/app.1995.070570407
  11. Y.J. Sun, G.H. Hu and M. Lambla. Angew. Makromol. Chem. 229, 1 (1995). https://doi.org/10.1002/apmc.1995.052290101
  12. H. Cartier and G.H. Hu, J. Polym. Sci. A: Polym. Chem. 36, 1053 (1998). https://doi.org/10.1002/(SICI)1099-0518(199805)36:7<1053::AID-POLA3>3.0.CO;2-3
  13. H. Huang and N.C. Liu, J. Appl. polym. Sci. 67, 1957 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980321)67:12<1957::AID-APP1>3.0.CO;2-M
  14. L.F. Chen, B. Wong and W.E. Baker, Polym. Eng. Sci. 36, 1594 (1996). https://doi.org/10.1002/pen.10556
  15. X. Zhang, H. Huang and Y. Zhang, J. Appl. polym. Sci. 85, 2862 (2002). https://doi.org/10.1002/app.10884
  16. X. Yuan, Z. Peng and Y. Zhang, J. Appl. polym. Sci. 77, 2740 (2000). https://doi.org/10.1002/1097-4628(20000919)77:12<2740::AID-APP220>3.0.CO;2-X