DOI QR코드

DOI QR Code

ON FINSLER METRICS OF CONSTANT S-CURVATURE

  • Mo, Xiaohuan (Key Laboratory of Pure and Applied Mathematics School of Mathematical Sciences Peking University) ;
  • Wang, Xiaoyang (School of Mathematical Sciences Beijing Institute of Technology)
  • Received : 2011.12.24
  • Published : 2013.03.31

Abstract

In this paper, we study Finsler metrics of constant S-curvature. First we produce infinitely many Randers metrics with non-zero (constant) S-curvature which have vanishing H-curvature. They are counterexamples to Theorem 1.2 in [20]. Then we show that the existence of (${\alpha}$, ${\beta}$)-metrics with arbitrary constant S-curvature in each dimension which is not Randers type by extending Li-Shen' construction.

Keywords

Finsler metric;S-curvature;(${\alpha}$, ${\beta}$)-metric;existence;H-curvature

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. H. Akbar-Zadeh, Sur les espaces de Finsler a courbures sectionnelles constants, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 10, 281-322.
  2. D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), no. 3, 377-435. https://doi.org/10.4310/jdg/1098137838
  3. X. Chen and Z. Shen, Randers metrics with special curvature properties, Osaka J. Math. 40 (2003), no. 1, 87-101.
  4. X. Chen and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340. https://doi.org/10.1007/s11856-009-0013-1
  5. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishers, 2005.
  6. T. Ding and C. Li, Lecture on Ordinary Differential Equations, Second Edition, Higher Eduction Press, 2004.
  7. B. Li and Z. Shen, On a class of weak Landsberg metrics, Sci. China Ser. A 50 (2007), no. 4, 573-589.
  8. B. Li and Z. Shen, On Randers metrics of quadratic Riemann curvature, Internat. J. Math. 20 (2009), no. 3, 369-376. https://doi.org/10.1142/S0129167X09005315
  9. X. Mo, On the non-Riemannian quantity H for a Finsler metric, Differential Geom. Appl. 27 (2009), no. 1, 7-14. https://doi.org/10.1016/j.difgeo.2008.06.002
  10. X. Mo and C. Yang, The explicit construction of Finsler metrics with special curvature properties, Differential Geom. Appl. 24 (2006), no. 2, 119-129. https://doi.org/10.1016/j.difgeo.2005.08.004
  11. X. Mo and C. Yu, On the Ricci curvature of a Randers metric of isotropic S-curvature, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 6, 911-916. https://doi.org/10.1007/s10114-007-6058-3
  12. B. Najafi, Z. Shen, and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87-97. https://doi.org/10.1007/s10711-007-9218-9
  13. S. Ohta, Vanishing S-curvature of Randers spaces, Differential Geom. Appl. 29 (2011), no. 2, 174-178. https://doi.org/10.1016/j.difgeo.2010.12.007
  14. G. Randers, On an asymmetric metric in the four-space of general relatively, Phys. Rev. 59 (1941), 195-199. https://doi.org/10.1103/PhysRev.59.195
  15. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128 (1997), no. 2, 306-328. https://doi.org/10.1006/aima.1997.1630
  16. Z. Shen, Projectively flat Randers metrics with constant flag curvature, Math. Ann. 325 (2003), no. 1, 19-30. https://doi.org/10.1007/s00208-002-0361-1
  17. Z. Shen, Landsberg curvature, S-curvature and Riemann curvature, A sampler of Riemann-Finsler geometry, 303-355, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004.
  18. Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature, Math. Z. 249 (2005), no. 3, 625-639. https://doi.org/10.1007/s00209-004-0725-1
  19. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Cana. Math. Bull. 56 (2013), 184-193. https://doi.org/10.4153/CMB-2011-163-4
  20. D. Tang, On the non-Riemannian quantity H in Finsler geometry, Differential Geom. Appl. 29 (2011), no. 2, 207-213. https://doi.org/10.1016/j.difgeo.2010.12.002