A Diagnostic Analysis on the Intensity Change of Typhoon NAKRI(0208)

태풍 나크리(0208)의 강도변화에 관한 진단적 분석

Kim, Baek-Jo;Kim, Kyung-Sik;Chang, Ki-Ho;Park, Jong-Kil

  • Received : 2012.11.19
  • Accepted : 2013.02.22
  • Published : 2013.03.29


In this study, the cause of rapid intensity change of typhoon Nakri(0208) in view of point of a trough-typhoon interaction using diagnostic methods was examined based on 6-hourly GDAPS data from 10 to 13 July, 2002. At 0000 UTC 13 July, high PV(Potential Vorticity) region moved southeastward, reaching to the western edge of the Korean peninsula and near typhoon center at surface and there shows an increasing value of EFC(Eddy Momentum Flux Convergence). Also, as the trough and typhoon approach one another at the same time, the vertical shear(850-200 hPa) increases to more than 15 m/s. Thus, it might be concluded that the trough-typhoon interaction made intensified significantly, providing the fact that typhoon Nakri(0208) underwent substantial weakening while moving northward to around Jeju island.


Typhoon Nakri(0208);Intensity change;Trough-typhoon interaction;Diagnostic methods


  1. Avila, L. A., 1998, Forecasting tropical cyclone intensity changes : An operational challenge. Preprints, Symp. on Tropical Cyclone Intensity Change, Phoenix, AZ, Amer. Meteor. Soc., 1-10.
  2. Bender, M. A., Ginis, I., Kurihara, Y., 1993, Numerical simulations of tropical cyclone-ocean interaction with a high resolution coupled model. J. Geophys. Res., 98, 23,245-23,263.
  3. Choi, K. S., Kim, B. J., Choi, C. Y., Nam, J. C., 2009 : Cluster analysis of tropical cyclones making landfall on the Korean Peninsula, Adv. Atmos. Sci., 26(2), 202-210.
  4. Chen, L., Gray, W. M., 1984, Global view of the upper level outflow patterns associated with tropical cyclone intensity changes during FGGE. Preprint Vol., 15th Conf. on Hurricanes and Tropical Meteorology, Miami, 224-231.
  5. Colon, J. A., Nightingale, W. R., 1963, Development of tropical cyclones in relation to circulation patterns at the 200 millibar level. Mon. Wea. Rev.,91, 329-336.<0329:DOTCIR>2.3.CO;2
  6. DeMaria, M., Baik, J. J., Kaplan, J., 1993, Upper-level eddy angular momentum fluxes and tropical cyclone intensity change. J. Atmos. Sci., 50, 1133-1147.<1133:ULEAMF>2.0.CO;2
  7. Emanuel, K. A, 1995, Sensitivity of tropical cyclones to surface exchange coefficients and a revised steadystate model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.<3969:SOTCTS>2.0.CO;2
  8. Erickson, C. O., 1967, Some aspects of the development of Hurricane Dorothy. Mon. Wea. Rev., 95, 121-130.<0121:SAOTDO>2.3.CO;2
  9. Fett, R. W., 1966, Upper level structure of the formative tropical cyclone. Mon. Wea. Rev., 94, 9-18.<0009:ULSOTF>2.3.CO;2
  10. Gray, M. W., 1979, Hurricanes: Their formation, structure, and likely role in the tropical circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
  11. Holland, G. J., Merrill, R. T., 1984, On the dynamics of tropical cyclone structure changes. Quart. J. Roy. Meteor. Soc., 110, 723-745.
  12. Kim, B. J., Cho., C. H., Chung, H. S., Shin, S. H., 2005, A Study on the intensity change of typhoon Nakri (0208) - Observation and GDAPS data analysis, J. Korean Meteor. Society, 41(5), 763-776.
  13. Kim, B. J., Chung, H. S., Cho, C. H., Kim, H. J., 2003, Structural features of typhoon RUSA's center, Vaisala News, 162, 4-7.
  14. Korea Meteorological Administration, 2012, Development of risk assessment model and application of the prevention meteorological information to reduce the natural disaster: Development of multiple risk assessment model and improvement of the disaster prevention information, Atmospheric Environment Information Research Center(AEI), Inje university, Korea Meteorological Administration, pp134.
  15. Kurihara, Y., Tuleya, R. E., Bender, M. A., 1998, The GFDL hurricane prediction system and its performance in the 1995 hurricane seasons. Mon. Wea. Rev., 126, 1306-1322.<1306:TGHPSA>2.0.CO;2
  16. Merrill, R. T., 1988a, Characteristics of uppertropospheric environmental flow around hurricanes. J. Atmos. Sci., 38, 1132-1151.
  17. Merrill, R. T., 1988b, Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 1978-1687.
  18. Miller, B. I., 1958, On the maximum intensity of hurricanes. J. Meteor., 15, 184-195.<0184:OTMIOH>2.0.CO;2
  19. Molinari, J., Vollaro, D. 1989, External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 1093-1105.<1093:EIOHIP>2.0.CO;2
  20. Molinari, J., and Vollaro, D., 1990, External influences on hurricane intensity. Part II: Vertical structure and response of hurricane vortex. J. Atmos. Sci., 47, 1902-1918.<1902:EIOHIP>2.0.CO;2
  21. Molinari, J., 1993, Environmental controls on eye wall cycles and intensity change in Hurricane Allen(1980). Tropical Cyclone Disasters, J. Lighthill et al., Eds., Peking University Press, 328-337.
  22. Molinari, J., Skubis, S., Vollaro, D., 1995, External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 3593-3606.<3593:EIOHIP>2.0.CO;2
  23. Montgomery, M. T., Farrell, B. F., 1993, Tropical cyclone formation. J. Atmos. Sci., 50, 285-310.<0285:TCF>2.0.CO;2
  24. Park, J. K., Kim, B. S., Jung, W. S., Kim, U. B., Lee, D. G., 2006, Change in statistical characteristics of typhoon affecting the Korean peninsula, Atmosphere, 16(1), 1-17.
  25. Park, J. K., Jung, W. S., Choi, H. J., 2008a, An analysis of the Korean peninsula damages vulnerabilities fir a natural disaster mitigation : Focus on public facilities damages, J. Environ. Sci., 17(4), 413-422.
  26. Park, J. K., Jung, W. S., Choi, H. J., 2008b, The study on the strong wind damahe prediction for estimation surface wind speed of typhoon season(I), J. Environ. Sci., 17(2), 195-201.
  27. Park, J. K., Jung, W. S., Choi, H. J., 2010, An estimation of amount of damage using the 3-second gust when the typhoon attack, J. Environ. Sci., 19(3), 353-363.
  28. Park, J. K., Jung, W. S., Choi, H. J., 2005, An analysis of meteorological disasters occurred in the Korean peninsula, J. Environ. Sci., 14(6), 613-619.
  29. Pfeffer, R. L., Challa, M., 1981, A numerical study of the role of eddy fluxes of momentum in the development of Atlantic hurricanes. J. Atmos. Sci., 38, 2392-2398.
  30. Ramage, C. S., 1974, The typhoons of October 1970 in the South China Sea: Intensification, decay, and ocean interaction. J. Appl. Meteor., 13, 739-751.<0739:TTOOIT>2.0.CO;2
  31. Riehl, H., 1950, A model of hurricane formation. J. Appl. Phys., 21, 917-925.
  32. Sadler, J, C., 1976, A role of the tropical upper tropospheric trough in early season typhoon development. Mon. Wea. Rev., 104, 1266-1278.<1266:AROTTU>2.0.CO;2
  33. Shapiro, L. J., Willoughby, H. E., 1982, The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378-394.<0378:TROBHT>2.0.CO;2
  34. Typhoon Research Center, Kongju National University, 2012,
  35. Willoughby, H. E., Black, P. G., 1996, Hurricane Andrew in Florida: Dynamics of a disaster. Bull. Amer. Meteor. Soc., 77, 543-549.<0543:HAIFDO>2.0.CO;2
  36. Willoughby, H. E., Clos, J. A., Shoreibah, M. G., 1982, Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395-411.<0395:CEWSWM>2.0.CO;2
  37. Yanai, M., 1968, Evolution of a tropical disturbance in the Caribbean Sea region. J. Meteor. Soc. Japan., 46, 86-109.


Supported by : 국립기상연구소