Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod(Tisbe sp.) and Amphipod(Monocorophium acherusicum)

저서환경에서 이산화탄소 노출에 따른 국내산 해산무척추동물 요각류(Tisbe sp.)와 단각류(Monocorophium acherusicum)의 만성영향

  • Moon, Seong-Dae (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Choi, Tae Seob (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Sung, Chan-Gyoung (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnBiz Co.) ;
  • Park, Young-Gyu (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology(KIOST)) ;
  • Kang, Seong-Gil (Maritime and Ocean Engineering Research Institute(MOERI)/Korea Institute of Ocean Science and Technology (KIOST))
  • 문성대 ((주)네오엔비즈 환경안전연구소) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 성찬경 ((주)네오엔비즈 환경안전연구소) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 박영규 (한국해양과학기술원 해양순환기후연구부) ;
  • 강성길 (한국해양과학기술원 해양시스템안전연구소)
  • Received : 2013.01.25
  • Accepted : 2013.03.27
  • Published : 2013.03.29


Chronic effects such as reproduction and population dynamics with elevated $CO_2$ concentration were evaluated using two representative marine benthic species, copepod (Tisbe sp.) and amphipod (Monocorophium acherusicum) adopting long-term exposure. Juvenile copepod and amphipod individuals were cultivated in the seawater equilibrated with control air (0.395 mmol $CO_2$/air mol) and high $CO_2$ air having 0.998, to 3.03, 10.3, and 30.1 mmol $CO_2$/air mol during 20 and 46 days, respectively. After the exposure period, the number of benthic invertebrate was counted with separate larval and juvenile stage such as naupliar, copepodid and adult for copepod, or neonate and adult for amphipod, respectively. The individual number of both test species at each life-stage was significantly decreased in seawater with 10.3 mmol $CO_2$/air mol or higher. Recently, the technology of marine $CO_2$ sequestration has been developed for the reduction of $CO_2$ emission, which may cause climate change. However, under various scenarios of $CO_2$ leaks during the injection process or sequestrated $CO_2$ in marine geological structure, the potential risk to organism including various invertebrates can be expected to exposure. So the results of this study suggested that the detailed consideration on the adverse effect with marine ecosystem can be prerequisite for the marine $CO_2$ sequestration projects.


Carbon dioxide;Chronic effect;Marine invertebrate;Benthic environment;Risk assessment


  1. Annunziatellis, A., Beaubien, S. E., Bigi, S., Ciotoli, G., Coltella, M., Lombardi, S., 2008, Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for $CO_{2}$ geological storage, Int. J. Greenh. Gas Con., 2, 353-372.
  2. Basallote, M. D., Rodriguez-Romero, A., Blasco, J., DelValls, A., Riba, I., 2012, Lethal effects on different marine organisms, associated with sediment? seawater acidification deriving from $CO_{2}$ leakage, Environ. Sci. Pollut. Res., 19, 2550-2560.
  3. Caldeira, K., Wickett, M. E., 2003, Anthropogenic carbon and ocean pH, Nature, 425, 365p.
  4. Doney, S. C., Fabry, V. J., Feely, R. A., Kleypas, J. A., 2009, Ocean Acidification: The other $CO_{2}$ problem, Annu. Rev. Mar. Sci., 1, 169-192.
  5. Egilsdottir, H., Spicer, J. I., Rundle, S. D., 2009, The effect of $CO_{2}$ acidified seawater and reduced salinity on aspects of the embryonic development of the amphipod Echinogammarus marinus (Leach), Mar. Pollut. Bull., 58, 1187-1191.
  6. Fabry, V. J., Seibel, B. A., Feely, R. A., Orr, J. C., 2008, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. of Mar. Sci., 65, 414-432.
  7. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., Millero, F. J., 2004, Impact of anthropogenic $CO_{2}$ on the $CaCO_{3}$ system in the oceans, Science, 305, 362-366.
  8. Gazeau, F., Quiblier, C., Jansen, J. M., Gattuso, J. P., Middelburg, J. J., Heip, C. H. R., 2007, Impact of elevated $CO_{2}$ on shellfish calcification, Geophys. Res. Lett., 34, L07603.
  9. Gentzis, T., 2000, Subsurface sequestration of carbon dioxide: an overview from an Alberta (Canada) perspective, Int. J. of Coal Geo., 43, 287-305.
  10. Global CCS Institute, 2011, The global status of CCS: 2011, Canberra, Australia.
  11. Green, M. A., Jones, M. E., Boudreau, C. L., Moore, R, L., Westman, B. A., 2004, Dissolution mortality of juvenile bivalves in coastal marine deposits, Limnol. Oceanogr., 49, 727-734.
  12. Haszeldine R. S., 2009, Carbon Capture and Storage: How Green Can Black Be?, Science, 325, 1647-1652.
  13. Hauton, C., Tyrrell, T., Williams, J., 2009, The subtle effects of sea water acidification on the amphipod Gammarus locusta, Biogeosciences, 6, 1479-1489.
  14. Havenhand, J. N., Buttler, F. R., Thorndyke, M. C., Williamson, J. E., 2008, Near-future levels of ocean acidification reduce fertilization success in a sea urchin, Curr. Biol., 18, R651-R652.
  15. IEA, 2009, Technology Roadmap - Carbon capture and storage, International Energy Agency, Paris.
  16. Intergovernmental Panel on Climate Change (IPCC), 2005, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press, New York.
  17. Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, UK and New York, NY, USA.
  18. Ishimatsu, A., Hayashi, M., Lee, K. S., Kikkawa, T., Kita, J., 2005, Physiological effects on fishes in a high-$CO_{2}$ world, J. Geophys. Res., 110, C09S09.
  19. Kang, S. G., Huh, C., 2011, Current status of marine CCS technology and commercialization plan in the future, Proceedings of the Korean Society for Marine Environmental Engineering Conference, 177p.
  20. Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., Opdyke, B. N., 1999, Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs, Science, 284, 118-120.
  21. Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., Robbins, L. L., 2006, Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, Report of a workshop held on 18-20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey.
  22. Kurihara, H., 2008, Effects of $CO_{2}$-driven ocean acidification on the early developmental stages of invertebrates, Mar. Ecol. Prog. Ser., 373, 275-284.
  23. Kurihara, H., Ishimatsu, A., 2008, Effects of elevated $CO_{2}$ on the life cycle of copepod Acartia tsuensis, Mar. Pollut. Bull., 56, 1086-1090.
  24. Kurihara, H., Kato, S., Ishimatsu, A., 2007, Effects of increased seawater $pCO_{2}$ on the early development of the oyster Crassostrea gigas, Aquatic Biology, 1, 91-98.
  25. Kurihara, H., Shimode, S., Shirayama, Y., 2004a, Sublethal effects of elevated concentration of $CO_{2}$ on planktonic copepods and sea urchins, J. Oceanogr., 60, 743-750.
  26. Kurihara, H., Shimode, S., Shirayama, Y., 2004b, Effects of raised $CO_{2}$ concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea), Mar. Pollut. Bull., 49, 721-727.
  27. Kurihara, H., Shirayama, Y., 2004a, Effects of increased atmospheric $CO_{2}$ on sea urchin early development, Mar. Ecol. Prog. Ser., 274, 161-169.
  28. Kurihara, H., Shirayama, Y., 2004b, Effects of increased atmospheric $CO_{2}$ and decreased pH on sea urchin embryos and gametes, In: Heinzeller, T., Nebelsick, J. H., (eds) Echinoderms. Proceedings of the 11th International Echinoderm Conference. AA Balkema Publishers, Leiden, 31-36pp.
  29. Langenbuch, M., Portner, H. O., 2004, High sensitivity to chronically elevated $CO_{2}$ levels in a eurybathic marine sipunculid, Aquat. Toxicol., 70, 55-61.
  30. Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F., Hay, S., 2007, $CO_{2}$-induced acidification affects hatching success in Calanus finmarchicus, Mar. Ecol. Prog. Ser., 350, 91-97.
  31. Michaelidis, B., Ouzounis, C., Paleras, A., Portner, H. O., 2005, Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis, Mar. Ecol. Prog. Ser., 293, 109-118.
  32. Miles, H., Widdicombe, S., Spicer, J. I., Hall-Spencer, J., 2007, Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris, Mar. Pollut. Bull. 54, 89-96.
  33. Moon, S. D., Lee, J. H., Sung, C. G, Choi, T. S., Lee, K. T., Lee, J. S., Kang, S. G., 2013, Cellular energy allocation of polychaete(Perinereis aibuhitensis) exposed to dissolved carbon dioxide in seawater, J. Korean Mar. Environ. Eng., 16, 9-16.
  34. Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., Yool, A., 2005, Anthropogenic ocean acidification over the twentyfirst century and its impact on calcifying organisms, Nature, 437, 681-686.
  35. Portner, H. O., 2008, Ecosystem effects of ocean acidification in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser., 373, 203-217.
  36. Portner, H. O., Langenbuch, M., Reipschlager, A., 2004, Biological impact of elevated ocean $CO_{2}$ concentrations: lessons from animal physiology and earth history, J. of Oceanogr., 60, 705-718.
  37. Royal Society, 2005, Ocean acidification due to increasing atmospheric carbon dioxide, Policy Document 12/05, The Royal Society, London.
  38. Sabine, C. L., Feely, R. A., Gruber, N., Key R. M., Lee K., Bullister J. L, Wanninkhof R., Wong C. S., Wallace D. W. R, Tilbrook B., Millero F. J., Peng T-H., Kozyr A., Ono T., Rios A. F., 2004, The Oceanic Sink for Anthropogenic $CO_{2}$, Science, 305, 367-371.
  39. Simpson, S. L., Spadaro, D. A., 2011, Performance and sensitivity of rapid sublethal sediment toxicity tests with the amphipod Melita plumulosa and copepod Nitocra spinipes, Env. Toxicol. Chem., 30, 2326-2334.
  40. Thomas, K. V., Barnard, N., Collins, K., Eggleton, J., 2003, Toxicity characterization of sediment porewaters collected from UK estuaries using a Tisbe battagliai bioassay, Chemosphere, 53, 1105-1111.
  41. USEPA, 1994, Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods, EPA 600/R-94/025.
  42. Whiteley, N. M., 2011, Physiological and ecological responses of crustaceans to ocean acidification, Mar. Ecol. Prog. Ser., 430, 257-271.
  43. Zeebe, R. E., Wolf-Gladrow, D., 2001, $CO_{2}$ in seawater: equilibrium, kinetics, isotopes. In: Halpern D (ed) Elsevier oceanography series, Series 65. Elsevier, Amsterdam.

Cited by

  1. -Induced Acidification for Marine Organisms vol.17, pp.2, 2014,